Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference34 articles.
1. Adams, R., Fournier, J.: Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), 140. Elsevier/Academic Press, Amsterdam, 2003.
2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)
3. Bethuel, F., Smets, D.: Slow motion for equal depth multiple-well gradient systems: the degenerate case. Discrete Contin. Dyn. Syst. 33(1), 67–87 (2013)
4. Blowey, J.F., Elliott, C.M.: The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis. European J. Appl. Math. 2(3), 233–280 (1991)
5. Bronsard, L., Kohn, R.V.: On the slowness of phase boundary motion in one space dimension. Comm. Pure Appl. Math. 43(8), 983–997 (1990)