Comparison Principle for Hamilton-Jacobi-Bellman Equations via a Bootstrapping Procedure

Author:

Kraaij Richard C.ORCID,Schlottke Mikola C.

Abstract

AbstractWe study the well-posedness of Hamilton–Jacobi–Bellman equations on subsets of $${\mathbb {R}}^d$$ R d in a context without boundary conditions. The Hamiltonian is given as the supremum over two parts: an internal Hamiltonian depending on an external control variable and a cost functional penalizing the control. The key feature in this paper is that the control function can be unbounded and discontinuous. This way we can treat functionals that appear e.g. in the Donsker–Varadhan theory of large deviations for occupation-time measures. To allow for this flexibility, we assume that the internal Hamiltonian and cost functional have controlled growth, and that they satisfy an equi-continuity estimate uniformly over compact sets in the space of controls. In addition to establishing the comparison principle for the Hamilton–Jacobi–Bellman equation, we also prove existence, the viscosity solution being the value function with exponentially discounted running costs. As an application, we verify the conditions on the internal Hamiltonian and cost functional in two examples.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3