Abstract
AbstractWe study an overdetermined fully nonlinear problem driven by one of the Pucci’s Extremal Operators in an external domain. Under certain decay assumptions on the solution, we extend Serrin’s symmetry result, i.e, every domain where the solution exists must be radial.
Funder
Technion - Israel Institute of Technology
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Bardi, M., Da Lio, F.: On the strong maximum principle for fully nonlinear degenerate elliptic equations. Archiv der Math. 73(4), 276–285 (1999)
2. Birindelli, I., Demengel, F.: Overdetermined problems for some fully non linear operators. Commun. Partial Differ. Equ. 38(4), 608–628 (2013)
3. Cutri, A., Leoni, F.: On the Liouville property for fully nonlinear equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000)
4. Damascelli, L., Pacella, F.: Monotonicity and symmetry results for $$ p $$-laplace equations and applications. Adv. Differ. Equ. 5(7–9), 1179–1200 (2000)
5. Fall, M.M., Jarohs, S.: Overdetermined problems with fractional laplacian. ESAIM: Control Optim. Calc. Var. 21(4), 924–938 (2015)