Abstract
AbstractIn this paper, we prove the existence of solutions for a class of viscoelastic dynamic systems on time-dependent cracking domains.
Funder
Scuola Internazionale Superiore di Studi Avanzati - SISSA
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference17 articles.
1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2005)
2. Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Sitzber. Kaiserl. Akad. Wiss. Wien, Math.-Naturw. Kl. 70, 275–300 (1874)
3. Caponi, M.: Linear hyperbolic systems in domains with growing cracks. Milan J. Math. 85, 149–185 (2017)
4. Caponi, M., Sapio, F.: A dynamic model for viscoelastic materials with prescribed growing cracks. Annali di Matematica Pura ed Applicata 199, 1263–1292 (2020)
5. Dafermos, C.: An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7, 554–569 (1970)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献