Abstract
AbstractTwo main results of fixed point theory in infinite dimensional space are Schauder’s theorem and the contraction mapping principle. Krasnoselskii combined them into one fixed point result. In this paper, we continue the study of extensions of these theorems investigating a convex modular in a original vector space, not in modular space and without $$\Delta _{2}$$
Δ
2
condition, to provide certain extensions of Banach contraction principle and Krasnoselskii fixed point theorem. We applied that theorem to solve the nonlinear periodic problem of Hill’s equation.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献