A damped elastodynamics system under the global injectivity condition: local wellposedness in $$L^p$$-spaces

Author:

Court Sébastien

Abstract

AbstractThe purpose of this paper is to model mathematically mechanical aspects of cardiac tissues. The latter constitute an elastic domain whose total volume remains constant. The time deformation of the heart tissue is modeled with the elastodynamics equations dealing with the displacement field as main unknown. These equations are coupled with a pressure whose variations characterize the heart beat. This pressure variable corresponds to a Lagrange multiplier associated with the so-called global injectivity condition. We derive the corresponding coupled system with nonhomogeneous boundary conditions where the pressure variable appears. For mathematical convenience a damping term is added, and for a given class of strain energies we prove the existence of local-in-time solutions in the context of the $$L^p$$ L p -parabolic maximal regularity.

Funder

University of Innsbruck and Medical University of Innsbruck

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3