Author:
Cinti Eleonora,Colasuonno Francesca
Abstract
AbstractWe establish a priori $$L^\infty $$
L
∞
-estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $$0<s\le 1/2$$
0
<
s
≤
1
/
2
the analysis started in [7].
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
Alma Mater Studiorum - Università di Bologna
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference15 articles.
1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. In: Pure and Applied Mathematics, vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)
2. Barrios, B., Colorado, E., Servadei, R., Soria, F.: (2015) A critical fractional equation with concave-convex power nonlinearities. In: Annales de l’Institut Henri Poincaré C Analyse Non Linéaire, Vol. 32, No. 4, pp. 875-900
3. Bonheure, D., Grumiau, C., Troestler, C.: Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions. Nonlinear Anal. 147, 236–273 (2016)
4. Bonheure, D., Noris, B., Weth, T.: Increasing radial solutions for Neumann problems without growth restrictions. In: Annales de l’Institut Henri Poincaré C Analyse Non Linéaire, Vol. 29, No. 4, pp. 573-588, (2012)
5. Boscaggin, A., Colasuonno, F., Noris, B.: A priori bounds and multiplicity of positive solutions for $$p$$-Laplacian Neumann problems with sub-critical growth. Proc. Roy. Soc. Edinburgh Sect. A 150(1), 73–102 (2020)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献