Author:
Kainane Mezadek Mohamed,Kainane Mezadek Mourad,Reissig Michael
Abstract
AbstractIn this paper we study the global (in time) existence of small data Sobolev solutions to the Cauchy problem for semilinear $$\sigma $$
σ
-evolution models with friction and visco-elastic damping and with a power nonlinearity, namely,
$$\begin{aligned} \left\{ \begin{array}{ll} u_{tt}+ (-\Delta )^\sigma u + u_t +(- \Delta )^\sigma u_t=\big ||D|^au\big |^p,\\ u(0,x)=0,\quad u_{t}(0,x)=u_1(x),\end{array} \right. \end{aligned}$$
u
tt
+
(
-
Δ
)
σ
u
+
u
t
+
(
-
Δ
)
σ
u
t
=
|
|
D
|
a
u
|
p
,
u
(
0
,
x
)
=
0
,
u
t
(
0
,
x
)
=
u
1
(
x
)
,
where $$\sigma \ge 1$$
σ
≥
1
, $$p>1$$
p
>
1
, and the data $$u_1\in L^m(\mathbb {R}^n) \cap H^{s-2\sigma }_q(\mathbb {R}^n) $$
u
1
∈
L
m
(
R
n
)
∩
H
q
s
-
2
σ
(
R
n
)
with $$s\ge 2\sigma $$
s
≥
2
σ
, $$q\in (1,\infty )$$
q
∈
(
1
,
∞
)
and $$m\in [1,q)$$
m
∈
[
1
,
q
)
. In the power nonlinearity we suppose $$a\in [0,2\sigma )$$
a
∈
[
0
,
2
σ
)
. We are interested in connections between regularity assumptions for the data and the admissible range of exponents p in the power nonlinearity.
Funder
Ministère de l’Enseignement Supérieur, de la Recherche, de la Science et de la Technologie
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献