Nonlinear acoustic equations of fractional higher order at the singular limit

Author:

Nikolić Vanja

Abstract

AbstractWhen high-frequency sound waves travel through media with anomalous diffusion, such as biological tissues, their motion can be described by nonlinear acoustic equations of fractional higher order. In this work, we relate them to the classical second-order acoustic equations and, in this sense, justify them as their approximations for small relaxation times. To this end, we perform a singular limit analysis and determine their behavior as the relaxation time tends to zero. We show that, depending on the nonlinearities and assumptions on the data, these models can be seen as approximations of the Westervelt, Blackstock, or Kuznetsov wave equations in nonlinear acoustics. We furthermore establish the convergence rates and thus determine the error one makes when exchanging local and nonlocal models. The analysis rests upon the uniform bounds for the solutions of the acoustic equations with fractional higher-order derivatives, obtained through a testing procedure tailored to the coercivity property of the involved (weakly) singular memory kernel.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy decay of some multi-term nonlocal-in-time Moore–Gibson–Thompson equations;Journal of Mathematical Analysis and Applications;2025-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3