Bi-Kolmogorov type operators and weighted Rellich’s inequalities

Author:

Addona Davide,Gregorio FedericaORCID,Rhandi Abdelaziz,Tacelli Cristian

Abstract

AbstractIn this paper we consider the symmetric Kolmogorov operator $$L=\Delta +\frac{\nabla \mu }{\mu }\cdot \nabla $$ L = Δ + μ μ · on $$L^2({\mathbb {R}}^N,d\mu )$$ L 2 ( R N , d μ ) , where $$\mu $$ μ is the density of a probability measure on $${\mathbb {R}}^N$$ R N . Under general conditions on $$\mu $$ μ we prove first weighted Rellich’s inequalities and deduce that the operators L and $$-L^2$$ - L 2 with domain $$H^2({\mathbb {R}}^N,d\mu )$$ H 2 ( R N , d μ ) and $$H^4({\mathbb {R}}^N,d\mu )$$ H 4 ( R N , d μ ) respectively, generate analytic semigroups of contractions on $$L^2({\mathbb {R}}^N,d\mu )$$ L 2 ( R N , d μ ) . We observe that $$d\mu $$ d μ is the unique invariant measure for the semigroup generated by $$-L^2$$ - L 2 and as a consequence we describe the asymptotic behaviour of such semigroup and obtain some local positivity properties. As an application we study the bi-Ornstein-Uhlenbeck operator and its semigroup on $$L^2({\mathbb {R}}^N,d\mu )$$ L 2 ( R N , d μ ) .

Funder

Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Analysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fourth-order operators with unbounded coefficients;Communications on Pure and Applied Analysis;2024

2. EVENTUAL POSITIVITY AND ASYMPTOTIC BEHAVIOUR FOR HIGHER-ORDER EVOLUTION EQUATIONS;Bulletin of the Australian Mathematical Society;2023-10-26

3. Eventual cone invariance revisited;Linear Algebra and its Applications;2023-10

4. Local uniform convergence and eventual positivity of solutions to biharmonic heat equations;Differential and Integral Equations;2023-09-01

5. Spectral properties of locally eventually positive operator semigroups;Semigroup Forum;2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3