Embeddedness of min–max CMC hypersurfaces in manifolds with positive Ricci curvature

Author:

Bellettini Costante,Workman Myles

Abstract

AbstractWe prove that on a compact Riemannian manifold of dimension 3 or higher, with positive Ricci curvature, the Allen–Cahn min–max scheme in Bellettini and Wickramasekera (The Inhomogeneous Allen–Cahn Equation and the Existence of Prescribed-Mean-Curvature Hypersurfaces, 2020), with prescribing function taken to be a non-zero constant $$\lambda $$ λ , produces an embedded hypersurface of constant mean curvature $$\lambda $$ λ ($$\lambda $$ λ -CMC). More precisely, we prove that the interface arising from said min–max contains no even-multiplicity minimal hypersurface and no quasi-embedded points (both of these occurrences are in principle possible in the conclusions of Bellettini and Wickramasekera, 2020). The immediate geometric corollary is the existence (in ambient manifolds as above) of embedded, closed $$\lambda $$ λ -CMC hypersurfaces (with Morse index 1) for any prescribed non-zero constant $$\lambda $$ λ , with the expected singular set when the ambient dimension is 8 or higher.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Reference23 articles.

1. Barbosa, J., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197, 123–138 (1988)

2. Bellettini, C.: Multiplicity-1 Minmax Minimal Hypersurfaces in Manifolds with Positive Ricci Curvature, (to appear in) Communications on Pure and Applied Mathematics, arXiv:2004.10112

3. Bellettini, C.: Generic existence of multiplicity-1 minmax minimal hypersurfaces via Allen-Cahn. Calc. Var. Partial. Differ. Equ. 61, 149 (2022)

4. Bellettini, C., Wickramasekera, N.: Stable CMC Integral Varifolds of Codimension 1: Regularity and Compactness (2018), arXiv:1802.00377

5. Bellettini, C., Wickramasekera, N.: Stable Prescribed-Mean-Curvature Integral Varifolds of Codimension 1: Regularity and Compactness (2020), arXiv:1902.09669

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3