Author:
Montoro Luigi,Sciunzi Berardino
Abstract
AbstractIn this paper we derive the Pohozaev identity for quasilinear equations $$\begin{aligned} -{\text {div}}(B'(H(\nabla u))\nabla H(\nabla u))=g(x, u) \quad \text{ in }\,\, \Omega , \quad \quad {(E)} \end{aligned}$$
-
div
(
B
′
(
H
(
∇
u
)
)
∇
H
(
∇
u
)
)
=
g
(
x
,
u
)
in
Ω
,
(
E
)
involving the anisotropic Finsler operator $$-{\text {div}}(B'(H(\nabla u))\nabla H(\nabla u))$$
-
div
(
B
′
(
H
(
∇
u
)
)
∇
H
(
∇
u
)
)
. In particular, by means of fine regularity results on the vectorial field $$B'(H(\nabla u))\nabla H(\nabla u)$$
B
′
(
H
(
∇
u
)
)
∇
H
(
∇
u
)
, we prove the identity for weak solutions and in a direct way.
Funder
Università della Calabria
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference16 articles.
1. Antonini, C.A., Ciraolo, G., Farina, A.: Interior regularity results for inhomogeneous anisotropic quasilinear equations. arXiv:2112.09087
2. Castorina, D., Riey, G., Sciunzi, B.: Hopf Lemma and regularity results for quasilinear anisotropic elliptic equations. Calc. Var. Partial Differ. Equ. 58(3), 18 (2019)
3. Cozzi, M., Farina, A., Valdinoci, E.: Gradient bounds and rigidity results for singular, degenerate, anisotropic partial differential equations. Commun. Math. Phys. 331(1), 189–214 (2014)
4. Cozzi, M., Farina, A., Valdinoci, E.: Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs. Adv. Math. 293, 343–381 (2016)
5. Cuesta, M., Takáč, P.: A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integral Equ. 13(4–6), 721–746 (2000)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献