Author:
Marras Monica,Vernier-Piro Stella,Yokota Tomomi
Abstract
AbstractIn this paper we consider radially symmetric solutions of the following parabolic–elliptic cross-diffusion system $$\begin{aligned} {\left\{ \begin{array}{ll} u_t = \Delta u - \nabla \cdot (u f(|\nabla v|^2 )\nabla v) + g(u), &{} \\ 0= \Delta v -m(t)+ u, \quad \int _{\Omega }v \,dx=0, &{} \\ u(x,0)= u_0(x), &{} \end{array}\right. } \end{aligned}$$
u
t
=
Δ
u
-
∇
·
(
u
f
(
|
∇
v
|
2
)
∇
v
)
+
g
(
u
)
,
0
=
Δ
v
-
m
(
t
)
+
u
,
∫
Ω
v
d
x
=
0
,
u
(
x
,
0
)
=
u
0
(
x
)
,
in $$\Omega \times (0,\infty )$$
Ω
×
(
0
,
∞
)
, with $$\Omega $$
Ω
a ball in $${\mathbb {R}}^N$$
R
N
, $$N\ge 3$$
N
≥
3
, under homogeneous Neumann boundary conditions, where $$g(u)= \lambda u - \mu u^k$$
g
(
u
)
=
λ
u
-
μ
u
k
, $$\lambda>0, \ \mu >0$$
λ
>
0
,
μ
>
0
, and $$ k >1$$
k
>
1
, $$f(|\nabla v|^2 )= k_f(1+ |\nabla v|^2)^{-\alpha }$$
f
(
|
∇
v
|
2
)
=
k
f
(
1
+
|
∇
v
|
2
)
-
α
, $$\alpha >0$$
α
>
0
, which describes gradient-dependent limitation of cross diffusion fluxes. The function m(t) is the time dependent spatial mean of u(x, t) i.e. $$m(t):= \frac{1}{|\Omega |} \int _{\Omega } u(x,t) \,dx$$
m
(
t
)
:
=
1
|
Ω
|
∫
Ω
u
(
x
,
t
)
d
x
. Under smallness conditions on $$\alpha $$
α
and k, we prove that the solution u(x, t) blows up in $$L^{\infty }$$
L
∞
-norm at finite time $$T_{max}$$
T
max
and for some $$p>1$$
p
>
1
it blows up also in $$L^p$$
L
p
-norm. In addition a lower bound of blow-up time is derived. Finally, under largeness conditions on $$\alpha $$
α
or k, we prove that the solution is global and bounded in time.
Funder
Università degli Studi di Cagliari
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献