Abstract
AbstractThe time-evolution of a moderately dense gas in a vacuum is described in classical mechanics by a particle density function obtained from the Boltzmann–Enskog equation. Based on a McKean–Vlasov equation with jumps, the associated stochastic process was recently constructed by modified Picard iterations with the mean-field interactions, and more generally, by a system of interacting particles. By the introduction of a shifted distance that exactly compensates for the free transport term that accrues in the spatially inhomogeneous setting, we prove in this work an inequality on the Wasserstein distance for any two measure-valued solutions to the Boltzmann–Enskog equation. As a particular consequence, we find sufficient conditions for the uniqueness and continuous-dependence on initial data for solutions to the Boltzmann–Enskog equation applicable to hard and soft potentials without angular cut-off.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献