Asymptotic stability of kink with internal modes under odd perturbation
Author:
Funder
Prin 2020
University of Trieste
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Link
https://link.springer.com/content/pdf/10.1007/s00030-022-00806-y.pdf
Reference46 articles.
1. Alammari, M., Snelson, S.: On asymptotic stability for near-constant solutions of variable-coefficient scalar field equations. arXiv:2104.13909
2. Alammari, M., Snelson, S.: Linear and orbital stability analysis for solitary-wave solutions of variable-coefficient scalar-field equations. J. Hyperbolic Differ. Equ. 19(1), 175–201 (2022)
3. An, X., Soffer, A.: Fermi’s golden rule and $$H^1$$ scattering for nonlinear Klein-Gordon equations with metastable states. Discrete Contin. Dyn. Syst. 40(1), 331–373 (2020)
4. Bambusi, D., Cuccagna, S.: On dispersion of small energy solutions to the nonlinear Klein Gordon equation with a potential. Am. J. Math. 133(5), 1421–1468 (2011)
5. Buslaev, V., Perelman, G.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Uraltseva, N. N. (ed.) Nonlinear Evolution Equations, Transl. Ser. 2 vol. 164, pp. 75–98. Amer. Math. Soc., Providence (1995)
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Asymptotic Stability on a Center Hypersurface at the Soliton for Even Solutions of the Nonlinear Klein–Gordon Equation When \(\boldsymbol{2 \ge p \gt \frac{5}{3}}\);SIAM Journal on Mathematical Analysis;2024-08-01
2. Asymptotic stability of small standing solitary waves of the one-dimensional cubic-quintic Schrödinger equation;Inventiones mathematicae;2024-05-28
3. On codimension one stability of the soliton for the 1D focusing cubic Klein-Gordon equation;Communications of the American Mathematical Society;2024-02-28
4. Asymptotic stability near the soliton for quartic Klein–Gordon equation in 1D;Pure and Applied Analysis;2023-12-15
5. On Asymptotic Stability of the Sine-Gordon Kink in the Energy Space;Communications in Mathematical Physics;2023-06-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3