1. Anza Hafsa, O., Mandallena, J.-P., Michaille, G.: Groupe de recherche Mathématiques en Cévennes. Convergence of a class of nonlinear reaction-diffusion equations and stochastic homogenization. http://mipa.unimes.fr/preprints/MIPA-Preprint03-2016.pdf
2. Anza Hafsa, O., Mandallena, J.-P., Michaille, G.: Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization. Asymptot. Anal. 115, 169–221 (2019). https://doi.org/10.3233/ASY-191531
3. Armstrong, S., Kuusi, T., Mourrat, J.-C.: Quantitative stochastic homogenization and large-scale regularity. Grundlehren der mathematischen Wissenschaften 352 (Comprehensive Studies in Mathematics), Springer, Berlin, 219
4. Armstrong, S., Souganidis, P.E.: Stochastic homogenization of HamiltonJacobi and degenerate Bellman equations in unbounded environments. J. Math. Pures Appl. 97(5), 460–504 (2012)
5. Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces. In: MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Mathematical Optimization Society, Philadelphia, PA, second edition, 2014. Applications to PDEs and optimization