Suspended sediment routing through a small on-stream reservoir based on particle properties

Author:

Krajewski AdamORCID,Sikorska-Senoner Anna E.ORCID

Abstract

Abstract Purpose A novel concept of suspended sediment (SS) routing through a small reservoir is proposed that relies on the particle properties in the reservoir inflow. Methods The SS routing through the reservoir is described following the single continuous stirred tank reactor concept with only one model parameter, the SS decay coefficient. This parameter is linked to the sediment settling velocity and water flow velocity. Hence, the model does not require a direct calibration with recorded data. This model was tested on a small reservoir in Warsaw, Poland, with seven storm events. Suspended sediment samples at the reservoir inflow and outflow were taken manually during the passage of flood flows at irregular intervals. The performance of the proposed method was verified with the approach when the model parameter is estimated directly from recorded events. Results The parameter calculated based on particle properties was about 10 times higher than the corresponding parameter optimized from recorded SS events. Hence, there was a need to introduce a correction factor to accurately predict the effluent SS. This led to a high model performance for all events (Nash-Sutcliffe = 0.672 on average). Conclusions (i) The proposed SS routing model based on particle properties has been proven to accurately simulate SS in the reservoir outlet. (ii) Thus, the parameter can be estimated from the sediment settling velocity and water flow velocity, but the correction factor must be applied. (iii) Our findings acknowledge difficulties in describing SS routing through small reservoirs and indicate a lack of knowledge on the functioning of these reservoirs.

Funder

National Science Center, Poland

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3