Methane and CO2 production in the wetland Lake Podpeč (Slovenia)

Author:

Ogrinc NivesORCID,Šegedin Urban,Faganeli Jadran

Abstract

Abstract Purpose This study deals with the identification of CH4 and CO2 sources in the high-carbonate wetland Lake Podpeč in the Ljubljana Marshes, Slovenia. Materials and methods Lake Podpeč is situated on the periphery of the Ljubljana Marshes in central Slovenia. A combination of chemical analysis and natural abundance analysis of stable carbon and hydrogen isotopes of CH4, along with analysis of dissolved inorganic carbon (DIC), was employed in an incubation experiment. Results and discussion The isotopic composition of dissolved inorganic carbon (δ13CDIC) suggests three main processes occurring during incubation: oxic degradation of organic matter (OM), anoxic OM degradation, and methanogenesis. During oxic degradation of OM, the δ13CDIC values slightly decrease from − 13.2 to − 14.5‰. However, after 50 days, the δ13CDIC values started to increase, reaching − 12.2‰ by the end of the experiment. 13C enrichment coincided with the formation of CH4, which began to increase simultaneously. The CH4 produced had an average δ13CCH4 value of − 67 ± 1‰ and δ2HCH4 value of − 389 ± 3‰, suggesting that CH4 is formed through acetate fermentation. The contribution of calcite dissolution to DIC increased during the degradation of OM by 53%. However, during methanogenesis, there was no significant change in the concentrations of Ca, and the estimated contribution to DIC was only 3%. Conclusions This study enhances our understanding of methane production in wetland Lake Podpeč and its relevance in the context of other high-carbonate lakes. The findings offer insights into the complex interactions between OM degradation, methane production pathways, and carbonate dissolution, which has implications for the global carbon cycle and greenhouse gas emissions.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3