Compositional dynamics of suspended sediment in the Rhine River: sources and controls

Author:

van der Perk MarcelORCID,Vilches Alvaro Espinoza

Abstract

Abstract Purpose Information on the geochemical composition of suspended sediments in rivers is crucial to identify sediment source type or area. In large river basins, however, the relation between sediment composition and its controlling factors is often obscured. This study aims to assess and improve the conceptual understanding on the factors and mechanisms that control the composition of suspended sediments in the River Rhine, one of the large European rivers, and to identify the dominant source types of elements. Materials and methods We performed log-linear regression analysis and principal component analysis (PCA) on bi-weekly monitoring data of suspended sediment composition, supplemented with daily measurements of suspended sediment concentrations (SSC) and discharge at the Lobith monitoring station near the German-Dutch border for the period 2011–2016. Results and discussion The statistical analyses show a consistent grouping of elements that display contrasting temporal variation or different responses to increased discharge. The contrasting behaviour also becomes manifest in the results from the PCA. A first component that explains about the half of the total variance in the entire dataset reflects the variation in clay content in the suspended sediment. A second component reflects anthropogenic pollution and explains about a quarter of the total variance. A third component probably reflects variation in sediment provenance. Conclusions The majority of the temporal variation in suspended sediment composition can be attributed to variations in grain size (clay content), organic matter content, and anthropogenic pollution. Only a minority of the variation can be attributed to variations in the contributions from different upstream source areas. This variation represented by the third and higher components from the PCA can potentially be used for sediment provenance analysis.

Funder

Utrecht University

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3