Translocation signatures of major elements in halophytes from hypersaline environments: the case study from Sečovlje Salina (Republic of Slovenia)

Author:

Kovač NivesORCID,Hauptman Žan,Dolenec Matej,Škornik Iztok,Šmuc Nastja Rogan

Abstract

Abstract Purpose Hypersaline environments are extremely vulnerable and important ecological niches. Because much knowledge has focused on the distribution of heavy metals in these areas, the detailed behavior of key major elements in hypersaline environments has not been elucidated in detail. This research aims to define the distribution, translocation pathways, and mobility patterns of the major elements in hypersaline sediments and halophytes. Materials and methods Samples of Sarcocornia fruticosa plants were collected from evaporation (ES) and crystallization (CA) sites in the Sečovlje Salina area (Republic of Slovenia). The major element contents were measured by digestion in HNO3 then aqua regia and analyzed by ICP-MS for ultra-low detection limits. Rhizo-sediments from EA and CA were processed using sequential extraction analysis to determine the precise fractionation of Al, Ca, Fe, K, Mg, Mn, and Na. To determine the translocation patterns of individual major elements in S. fruticosa, two indices were calculated: bioconcentration (BCF) and translocation factor (TF). Differences and similarities between samples and elements were highlighted using Statistica VII and Grapher 8 statistical software and Ward’s method, respectively. Results and discussion The obtained results confirmed that halophyte plants take up large amounts of the essential micronutrient Na due to high salinity, and that macronutrients (Ca, Mg, P, and S) are intensively translocated from the roots to the upper parts of the plant. The overall trend in translocation signature for major elements, distinguished by BCF and TF factor calculations, emphasizes that root tissues accumulate a significant amount of major elements and that accumulation depends on individual major elements. It also showed that the major elements Ca, Mg, Na, P, and S are highly translocated within plants, while the mobility of Al, Fe, and K is limited. Conclusions Our results suggest that the major elements are vital macronutrients for halophytes, but their accumulation in the roots and further translocation within the plant depend on individual elements and their dynamics. The translocation pattern of the major elements can be justified as follows: Ca is an essential element for plant growth, maintenance, and membrane integrity; Mg is a specific component of chlorophyll; Na is present because of the hypersaline environment; P is a key component of plant metabolic processes; S represents an important component of enzymes and other key proteins; Al and Fe are preferentially accumulated in roots; and plant leaves are generally undersupplied with K. The presented results are of great importance for the general knowledge and use/application of halophytes in agriculture and biotechnology.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3