Abundance, distribution, and ecological/environmental risks of critical rare earth elements (REE) in phosphate ore, soil, tailings, and sediments: application of spectroscopic fingerprinting

Author:

Khelifi FatenORCID,Batool Sadia,Kechiched Rabah,Padoan Elio,Ncibi Kaouther,Hamed Younes

Abstract

Abstract Purposes This research focuses on the characterization of phosphate ore, its solid effluents, and nearby contaminated soils in the southwest Tunisia (Gafsa-Metlaoui Basin). It aims also at evaluating the vertical distribution and abundance of critical rare earth elements (REE) in the different materials and their ecological and environmental risks. Materials and methods The sampled materials went through physical, chemical, and mineralogical characterization which involved XRF, XPS, XRD, and ICP-MS analyses. The REE anomalies and the environmental and ecological indices were calculated. Results and discussions Results show relatively high concentrations of nine rare REEs, following the sequence La > Ce > Nd > Y > Gd > Eu > Sm > Yb > Tb and trace metal elements (TME) such as Cd, Cr, Mn, Zn, Co, Fe, Sr, Cu, Ni, Pb, Ba that surpass, in some cases, international standards. The vertical distribution of the studied elements within a sediment, tailings, and soil profiles (beyond 20 cm of depth) indicates their likely in-depth migration. TME- and REE-bearing phosphate samples reflect mostly oxic conditions in the southern area with high positive Eu anomalies signifying possible mixing of sources. The environmental assessment indicate no contamination and a moderate enrichment of REEs, except for Eu, which displays significant contamination and extreme enrichment. Whereas, a deficiency of Y has been detected in most of the studied samples except for sludge sample which was also found significantly enriched with REE. Conclusions There are fundamental similarities between the different studied samples with high carbonate mineral concentrations. Statistical analysis confirmed the spectroscopic fingerprints demonstrating that the different materials share a similar composition. All of these similarities are most likely linked to the impact of mining activities on sediments and soils. Overall, our findings highlight the global effect of ore processing in determining the geochemical and the mineralogical characteristics of the surrounding environments of mines.

Funder

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3