The variation and trends of nitrogen cycling and nitrogen isotope composition in tree rings: the potential for fingerprinting climate extremes and bushfires

Author:

Succarie AmalORCID,Xu Zhihong,Wang Wenjie

Abstract

Abstract Purpose Climate extremes, such as droughts and floods, have become intensified and more frequent due to intensifying climate change. Increased atmospheric carbon dioxide (CO2) and warming-induced water limitation, as well as climate extremes, may alter carbon (C) and nitrogen (N) cycling in forest ecosystems. This provides a brief review of stable nitrogen isotopic composition (δ15N) in tree ring in relation to climate extremes and bushfires in context of N availability and losses in forest ecosystems. Material and methods Tree rings were extracted from four Pinus sylvestris and four Larix gmelinii sample trees, located in a boreal plantation forest of Mohe City, Heilongjiang Province, China. Tree rings were measured to obtain mean annual basal area increment (BAI), while tree ring δ15N and total N concentrations were measured on mass spectrometer at 3-year intervals. The tree ring δ15N data were related to possible climate extremes and bushfires. A brief review of the relevant literature was also undertaken to support our preliminary research findings. Results and discussion Globally, increasing atmospheric CO2 concentration and water limitations have led to a warmer-drier climate. This has also been associated with increases of climate extremes such as drought and floods as well as bushfires. These extremes have been recorded with detrimental effects on plant and soil structures within forest ecosystems and play an important role in regulating N availability and losses in forest ecosystems. Studies of N deposition within forest ecosystems using soil and plant δ15N also showed that N losses under various climate extremes can occur through direct changes in N cycling, such as increasing soil nitrification and denitrification or leaching. It is highlighted that tree rings δ15N has the potential to fingerprint the intensity and frequency of climate extremes and bushfires in the forest ecosystems, but more such tree ring δ15N research needs to be done in diversified forest ecosystems to confirm the potential of using tree ring δ15N for quantifying the frequency and intensity of climate extremes and bushfires at both regional and global scale. Conclusion The variation and trend of δ15N in the soil–plant-climate systems are closely linked to the N cycling in forest ecosystems, and tree ring δ15N has the great potential to fingerprint both intensity and frequency of climate extremes such as drought and floods as well as bushfires.

Funder

Griffith University

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3