The bioavailability of particulate nitrogen in eroded sediment: Catchment sources and processes

Author:

Garzon-Garcia AlexandraORCID,Burton Joanne M.,Ellis Rob,Askildsen Maria,Bloesch Philip,De Hayr Rob,Moody Phil

Abstract

Abstract Purpose Anthropogenic land use change has caused an increase in particulate nutrient loads from catchments draining to the Great Barrier Reef (GBR). The research in GBR catchments has indicated that particulate nutrients are bioavailable to both freshwater and marine phytoplankton, but relative importance of this source of nutrients to the GBR is unknown. We quantified the contribution of this source of bioavailable nitrogen in a dry-tropics grazing and a wet-tropics fertilized mixed land use catchment of the GBR. Materials and methods The different bioavailable nitrogen pools and associated processes through which dissolved inorganic nitrogen (DIN) is generated from eroded sediment (mass of DIN generated per mass of sediment) were identified. These pools and processes were quantified from a range of representative sediment sources (e.g. surface and subsurface soil and different land uses). We collected 17 sediment source samples in the wet tropics and 41 in the dry tropics. We combined the N pool concentration data with spatial and hydrological fine sediment modelling to estimate the contribution from different sources and processes/pools to the end-of-catchment DIN load. Results and discussion The modelled load of DIN generated from sediment accounted for all the monitored DIN load in the grazing-dominated catchment but was insignificant in the fertilized mixed land use catchment. Sediment from surface erosion (hillslope erosion) and some soil types contributed disproportionally to the modelled DIN generation. Fast solubilisation of DIN was the main process in the catchments studied. The importance of mineralisation of the organic fraction increased with the time the sediment was in suspension. Conclusion Particulate nutrients in sediment are a significant source of bioavailable nitrogen in eroding grazing catchments. The processes that drive this bioavailability are complex, vary with sediment source and operate at different timeframes and spatial scales.

Funder

Griffith University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3