Do temperature and moisture conditions impact soil microbiology and aggregate stability?

Author:

Dowdeswell-Downey E.,Grabowski R. C.ORCID,Rickson R. J.

Abstract

Abstract Purpose Studies predicting the impacts of climate change on erosion have considered numerous variables, such as rainfall erosivity and vegetation cover, but have not considered potential changes in soil erodibility. Erodibility is an intrinsic property of the soil, strongly correlated with the stability of soil aggregates. It is influenced by soil physico-chemical attributes, including the microbiological community. The study aim was to determine how shifts in temperature and moisture conditions, which other studies have shown affect microbiological communities, might affect aggregate stability. Methods Using an experimental approach with laboratory microcosms, aggregates from a sandy loam soil and a clay soil were incubated at three temperatures and three moisture conditions in a factorial experimental design. Aggregate stability was quantified using rainfall simulation. Microbiological indicator metrics were measured to evaluate treatment microbiological impacts, including community composition (PLFA), biomass carbon, and respiration. Results Temperature and moisture content affected aggregate stability significantly, but differently for the two soil types tested. For the sandy loam soil, aggregate stability decreased significantly with increasing moisture content. For the clay soil, aggregate stability increased significantly with increasing temperature. For both soil textures, temperature and moisture content affected microbiological community composition and respiration. Regression analysis indicated that microbiological properties were significant predictors of aggregate stability. Conclusion Our results emphasise the dynamic nature of soil aggregate stability. Changes in microbiological metrics suggest possible biological mechanisms for aggregate stability changes, which should be investigated further to better understand the potential impacts of climate change on soil erodibility and erosion.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3