Does cattle and sheep grazing under best management significantly elevate sediment losses? Evidence from the North Wyke Farm Platform, UK

Author:

Pulley S.ORCID,Cardenas L. M.,Grau P.,Mullan S.,Rivero M. J.,Collins A. L.

Abstract

Abstract Purpose Intensive livestock grazing has been associated with an increased risk of soil erosion and concomitant negative impacts on the ecological status of watercourses. Whilst various mitigation options are promoted for reducing livestock impacts, there is a paucity of data on the relationship between stocking rates and quantified sediment losses. This evidence gap means there is uncertainty regarding the cost–benefit of policy preferred best management. Methods Sediment yields from 15 hydrologically isolated field scale catchments on a heavily instrumented ruminant livestock farm in the south west UK were investigated over ~ 26 months spread across 6 years. Sediment yields were compared to cattle and sheep stocking rates on long-term, winter (November–April), and monthly timescales. The impacts of livestock on soil vegetation cover and bulk density were also examined. Cattle were tracked using GPS collars to determine how grazing related to soil damage. Results No observable impact of livestock stocking rates of 0.15–1.00 UK livestock units (LU) ha−1 for sheep, and 0–0.77 LU ha−1 for cattle on sediment yields was observed at any of the three timescales. Cattle preferentially spent time close to specific fences where soils were visually damaged. However, there was no indication that livestock have a significant effect on soil bulk density on a field scale. Livestock were housed indoors during winters when most rainfall occurs, and best management practices were used which when combined with low erodibility clayey soils likely limited sediment losses. Conclusion A combination of clayey soils and soil trampling in only a small proportion of the field areas lead to little impact from grazing livestock. Within similar landscapes with best practice livestock grazing management, additional targeted measures to reduce erosion are unlikely to yield a significant cost-benefit.

Funder

Biotechnology and Biological Sciences Research Council

Environment Agency

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3