Impact of the change in irrigation practices from untreated to treated wastewater on the mobility of potentially toxic elements (PTEs) in soil irrigated for decades

Author:

Ziegler Rivera Francisco Robert AlexanderORCID,Prado Pano Blanca,Guédron Stéphane,Mora Palomino Lucy,Ponce de León Hill Claudia,Siebe Grabach Christina

Abstract

Abstract Purpose Long-term agricultural irrigation with untreated wastewater has resulted in metals and metalloids accumulation in soil. Little information is available on the consequences of a change to irrigation with treated water on the mobility of these potentially toxic elements (PTEs). Materials and methods The potential mobility of PTEs was assessed using sequential extractions performed on soil irrigated with untreated wastewater for a century in Mexico. The possible effects of change in irrigation practices on PTEs mobility was evaluated through batch experiments, simulating a decrease in pH, an increase in salinity, and in chlorine of the irrigation water. Geochemical modeling allowed predicting the speciation of mobilized PTEs. Results and discussion Soils irrigated with untreated water were mainly enriched with PTEs in surface horizons. Only Cd and As were found in the soluble or exchangeable fractions (< 20%). Cu and Pb were mainly associated with soil organic matter (OM), whereas As and Zn were bound to iron oxides, and Cr with refractory minerals. Batch experiments revealed that acidification resulted in the increased solubility of Cu, Zn, and Cd for surface samples, and As in deep horizons. In contrast, increased salinity only mobilized Zn, Cd, and Cr. Water chlorination mobilized higher amount of Zn, Pb, and Cd compared to the other experiments. As was not mobilized for these two experiments. Conclusion A change in irrigation practices could increase the mobility of PTEs if water treatment is not adapted to the soil type. The mobilization of PTEs, especially As and Cd, could affect both crops and groundwater quality. It is essential to monitor this mobility to avoid future risks to human health.

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3