Different responses of lipids and lignin phenols to nitrogen addition in meadow grassland soil

Author:

Pei Zhifu,Shen Qinguo,Shang Xingling,Hong Mei

Abstract

Abstract Purpose Nitrogen (N) enrichment can affect the composition and stability of soil organic carbon (SOC) pools by altering vegetation and soil properties. However, the response of plant-derived carbon components in soil to different N addition levels is unclear. We investigated the changes and potential driving processes of plant-derived carbon components (especially lignins and lipids) in meadow grassland soils under long-term N addition in eastern Inner Mongolia, China. Materials and methods Biomarker technology was utilised to analyse changes in plant-derived carbon components (C>20 free lipids, bound lipids, and lignin phenols) in soil under different N addition levels, including changes in soil chemical properties, enzyme activity, plant biomass, and diversity under N addition, as well as the specific pathways involved. Results and discussion We found that high levels of N addition significantly reduced the concentration of soil lignin phenols whereas increased the accumulation of lipids (free and bound lipids). Compared with changes in plant biomass and diversity, soil chemical properties and enzyme activity play a more significant role in regulating the accumulation and degradation of plant-derived carbon. Structural equation modelling (SEM) showed that decreases in lignin phenol concentration were related to specific biochemical decomposition processes (increased polyphenol oxidase activity and decreased C/N). The increase in lipids associated with the protective effects of minerals mediated by pH. Conclusions In general, plant-derived carbon components showed inconsistent responses to N addition, lignin phenol concentration decreased and lipid concentration increased, which was mainly related to the change of soil biochemical properties. Plant-derived carbon components only showed significant changes under high N addition levels. Furthermore, our research indicates that SOC sequestration and functioning are highly dependent on soil biochemical properties, which weakens the influence of changes in plant carbon input on soil carbon storage.

Funder

Research Innovation Fund for doctoral students of Inner Mongolia Autonomous Region

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3