Impacts of vegetation and palaeohydrological changes on the n-alkane composition of a Holocene peat sequence from the Upper Vistula Valley (southern Poland)

Author:

Skreczko SylwiaORCID,Szymczyk ArturORCID,Nadłonek Weronika

Abstract

Abstract Purpose The analysis of n-alkanes in palaeoenvironmental studies of peatlands is mainly limited to ombrogenous peatlands which are a rare feature in the environment. Using n-alkane and plant macrofossil analysis, we have tracked changes in the environment in the valley of a large Central European river. We tested the possibilities for applying such studies to low-moor bogs which are the most commonly occurring type of bog in the world. Materials and methods Representative peat samples were taken from two profiles in a peatland located in the Vistula Valley (southern Poland), and they were analysed for the occurrence and distribution of biomarkers. The distribution of n-alkanes was determined using gas chromatography-mass spectrometry (GC–MS). The botanical composition of the samples was determined by analysis of plant macrofossil remains, and the degree of peat decomposition was also determined. Results and discussion Samples of low-moor peat were characterised by a prevalence of medium- and long-chain n-alkane homologues, which is typical for higher plants. The variable values of the CPI, CPI (25–31), and the C23/C25 ratio have provided information on the stages of formation of the Zapadź bog. The source of n-alkane differentiation is vegetation change related to palaeohydrological dynamics and palaeoenvironmental conditions within the peatland. Conclusions We have shown that analysis of n-alkanes can be successfully used in low-moor bogs as a complement to palaeobotanical and palaeozoological methods. The bringing together of these types of research enables changes in the ecosystems of large river valleys to be tracked.

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3