Sediment load variability in response to climate and land use changes in a Carpathian catchment (Raba River, Poland)

Author:

Szalińska Ewa,Orlińska-Woźniak Paulina,Wilk Paweł

Abstract

Abstract Purpose This study analyzes the variability of sediment loads under variant climate change and land use scenarios in a Carpathian catchment with a dam reservoir. The areas with the highest share of sediment loads are tracked to establish possible indications for future catchment management plans. Materials and methods Analyses were performed for the Raba River catchment (Poland, Carpathian Mountains) with use of the Macromodel DNS/SWAT. The RCP 4.5 climate forecast predictions (2021–2050 and 2071–2100), downscaled for the area of Poland, and land use predictions from the DYNA-Clue model for the Carpathian area, were taken into consideration. A total of seven scenarios were created, accounting for precipitation (P1 and P2), temperature (T1 and T2), land use (LU) changes, and combined effects (COMB1 and COMB2). Results and discussion The average load delivered to the dam reservoir was estimated as 2.43 Gg y−1, and its seasonal/yearly variability was followed by local meteorological phenomena. Among the tested factors, precipitation change, in terms of total amount and intensity, exerted the most impact on sediment loads causing their increase. Temperature and land use changes resulted in a slight decrease. Combined scenarios implied that changes of the catchment area use, such as increase of forest cover, can noticeably reduce sediment loads delivered into a dam reservoir. Conclusions The performed simulations revealed the importance of incorporating variant scenarios for catchment management plans, development of land use mitigation measures (erosion), and operational procedures for the dam reservoir. Particular attention should be paid to warmer winters with heavy rainfalls and temperatures above zero, which together with a lack of plant vegetation result in elevated annual sediment loads reaching the dam reservoir. Further changes must be mitigated by anti-erosion investments.

Funder

AGH University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Stratigraphy,Earth-Surface Processes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3