A fingerprint of a heterogeneous data set

Author:

Spallanzani MatteoORCID,Mihaylov GueorguiORCID,Prato MarcoORCID,Fontana RobertoORCID

Abstract

AbstractIn this paper, we describe the fingerprint method, a technique to classify bags of mixed-type measurements. The method was designed to solve a real-world industrial problem: classifying industrial plants (individuals at a higher level of organisation) starting from the measurements collected from their production lines (individuals at a lower level of organisation). In this specific application, the categorical information attached to the numerical measurements induced simple mixture-like structures on the global multivariate distributions associated with different classes. The fingerprint method is designed to compare the mixture components of a given test bag with the corresponding mixture components associated with the different classes, identifying the most similar generating distribution. When compared to other classification algorithms applied to several synthetic data sets and the original industrial data set, the proposed classifier showed remarkable improvements in performance.

Funder

ETH Zurich

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Statistics and Probability

Reference25 articles.

1. Abdullin A, Nasraoui O (2012) Clustering heterogeneous data sets. In: Proceedings of the 2012 Eighth Latin American Web Congress, IEEE

2. Ahmad A, Dey L (2007) A $$k$$-mean clustering algorithm for mixed numeric and categorical data. Data Knowl Eng 63:503–527

3. Andrews S, Tsochantaridis I, Hofmann T (2003) Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems 15, Neural Information Processing Systems (NIPS)

4. Biernacki C, Deregnaucourt T, Kubicki V (2015) Model-based clustering with mixed/missing data using the new software MixtComp. In: 8th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics), ERCIM

5. Blizard WD (1991) The development of multiset theory. Modern Logic 1:319–352

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3