Dominant drivers of plant community assembly vary by soil type and time in reclaimed forests

Author:

Trepanier Kaitlyn E.ORCID,Pinno Bradley D.,Errington Ruth C.

Abstract

AbstractInformation on plant community assembly mechanisms is limited on forest reclamation sites after mining in the Canadian boreal forest. We assessed the change in plant community composition after Year 2 and Year 5 on species-rich forest floor mineral mix (FFMM) and species-poor peat mineral mix (PMM) reclamation soils by examining assembly mechanisms, i.e., seed bank, seed rain, biotic dispersal, vegetative expansion, and competition. Initial plant cover and diversity were greater on FFMM due to non-native species originating from the seed bank, which had 5× more seeds in the FFMM. By Year 5, both soil types had approximately 40% cover and 80 species richness due to the addition of wind and biotic-dispersed species and were characterized by a shift towards native species. Native forbs using vegetative reproduction expanded up to 2 m from FFMM into PMM. At Year 5 competition does not seem to have a large role in the structuring of the vegetation community. Overall, multiple factors were involved in structuring plant communities on reclamation sites, but we observed a general convergence between plant communities on different soil types in a relatively short period of time.

Funder

Canadian Natural Resources Limited

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3