Thigmomorphogenic responses of epiphytic bromeliads to mechanically induced stress

Author:

Tay Jessica Y. L.ORCID,Zotz Gerhard,Einzmann Helena J. R.

Abstract

AbstractVascular epiphytes represent almost 10% of all terrestrial plant diversity. Despite the extensive research on the functional ecology and challenges of epiphytic growth, there is still very little known on how exposure to mechanically induced stress affects the growth and development of epiphytes. Therefore, this study investigated the effect of such mechanical stress on the growth and biomass allocation of epiphytic bromeliads. Juvenile plants of two species were subjected to two types of mechanical stress in the greenhouse—permanent displacement and temporary, recurring mechanical flexing. ANOVAs were used to test possible treatment effects on growth, root–shoot ratio, root diameter, and root area distribution ratio. Contrary to previous studies on herbaceous plants, these bromeliads showed little to no change in root and shoot properties in either species. The root–shoot ratio increased in disturbed Guzmania lingulata plants, but not in Vriesea sp. Treatment effects on growth were inconsistent: a stress effect on growth was significant only in the first 2 months of the experiment in G. lingulata, whilst none of the stress treatments negatively affected growth in Vriesea sp. All disturbed plants showed some degree of curvature on their stems and leaves against the area of stress to obtain an upright position. This was probably related to the maintenance of a functional tank. This study provides quantitative and qualitative data to understand thigmomorphogenic responses of bromeliads to mechanical stress. Future studies could include field surveys to quantify on-site mechanical stresses and the corresponding morphological changes in vascular epiphytes.

Funder

Deutsche Forschungsgemeinschaft

Carl von Ossietzky Universität Oldenburg

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3