Stacked machine learning models for predicting species richness and endemism for Mediterranean endemic plants in the Mareotis subsector in Egypt

Author:

Bedair Heba,Shaltout Kamal,Halmy Marwa Waseem A.

Abstract

AbstractAn effective method for identifying species and evaluating the effects of changes caused by humans on specific species is the application of species distribution modelling (SDM) in desert environments. The fact that many dry lands and deserts throughout the world are situated in inhospitable regions may be the reason why such applications are still infrequently used on plant species in Egypt's Mediterranean region. Henceforth, the current study aims to map species richness and weighted endemism of Mediterranean endemics in the Mareotis subsector in Egypt and determine the environmental variables influencing distribution of these taxa. We produced a map of species distribution range using Ensemble SDMs. Further, stacked machine learning ensemble models derived from Random Forest (RF) and MaxEnt models were applied on 382 Mediterranean endemics distribution data to estimate and map diversity and endemism using two indices: species richness (SR) and weighted endemism index (WEI). The best models for ensemble modelling were chosen based on Kappa values and the Area Under the Receiver Operator Curve (AUC). The results showed that the models had a good predictive ability (Area Under the Curve (AUC) for all SDMs was > 0.75), indicating high accuracy in forecasting the potential geographic distribution of Mediterranean endemics. The main bioclimatic variables that impacted potential distributions of most species were wind speed, elevation and minimum temperature of coldest month. According to our models, six hotspots were determined for Mediterranean endemics in the present study. The highest species richness was recorded in Sallum, Matrouh wadis and Omayed, followed by Burg El-Arab, Ras El-Hekma and Lake Mariut. Indeed, species richness and endemism hotspots are promising areas for conservation planning. This study can help shape policy and mitigation efforts to protect and preserve Mediterranean endemics in the coastal desert of Egypt. These hotspots should be focused on by policy makers and stakeholders and declared as protectorates in the region. The largest number of species per area would be protected by focusing primarily on the hotspots with high species richness.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Ecology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3