Complex bubble deformation and break-up dynamics studies using interface capturing approach

Author:

Fan Yuqiao,Fang Jun,Bolotnov Igor

Abstract

AbstractThe dynamics of bubble deformation has significant impacts on two-phase flow fundamentals such as bubble induced turbulence and flow regime transition. Despite the significant progress achieved by experimental studies on bubble deformation, certain limitations still exist especially for wide-range datasets. To significantly expand the flow conditions available from experiments, direct numerical simulation (DNS) is utilized to study the bubble-liquid interactions using finite-element solver with level-set interface capturing method. Different from conventional investigations of bubble rising and deforming in stagnant liquids, a proportional-integral-derivative (PID) bubble controller is leveraged to maintain the bubble location in uniform liquid flow. This paper evaluates the reliability and reproducibility of the PID bubble controller for complex bubble deformation studies through a comprehensive set of verification and validation studies. An improved bubble deformation map is developed, based on Weber number and bubble Reynolds number, showing six zones for different deformation and break-up mechanisms. This research aims at producing virtual experiment level data source using interface resolved DNS and shedding light into the physics of interface dynamics. The insights obtained can be further incorporated in improved multiphase CFD models to guide the engineering designs and industrial processes where bubble deformation and break-up play a pivotal role.

Publisher

Springer Science and Business Media LLC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3