Modelling morphodynamic responses of a natural embayed beach to Typhoon Lekima encountering different tide types

Author:

Liu Xu,Kuang Cuiping,Huang Shichang,Dong Weiliang

Abstract

AbstractRecent developments in process-based coastal area models such as XBeach provide new opportunities to predict coastal responses to primary forcing mechanisms such as storm hydrodynamic by using 2DH grids. However, due to the lack of measured data, there are few application scenarios of the models. Therefore, more measurement and research are needed. In this paper, the Typhoon Lekima that hitting Zhejiang Province during neap tide period was selected to simulate morphodynamic responses of the Huangcheng Beach by assuming encountering with different tide types. Cross shore measurements with eight cross-shore profiles (named S1 ~ S8 from north to south) of the Huangcheng Beach pre- and post- the Typhoon Lekima respectively were presented. Then a 2DH storm surge and wave coupled model was established with Delft3D Flow/Wave. The model was well calibrated with measured water levels and wave data and provided hydrodynamic boundary conditions of different typhoon and tide types coupling situations for a refined model. The refined model was built using XBeach and simulated the morphological responses of the Huangcheng beach with well verifications. On basis of the numerical results, bed level changes at the eight profiles were analyzed, and the character of erosion and deposition under different tide conditions were illustrated. The net sand volume changes were got smaller under the spring tide condition rather than middle tide and neap tide conditions. Further study of the distribution of wave induced current at different stages of collision, inundation and ebb shown that the stronger current under spring tide condition would increase the sediment transport rate and reduce the deposition volume at profiles S3 and S6 ~ S8, and the total amount of sediment involved in transportation had increased for the whole beach, leading to the reduction of net erosion volume at profiles S1, S2, S4 and S5.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Ocean Engineering,Waste Management and Disposal,Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3