Scientific basis, engineering feasibility and system optimization of green sea dykes for temperate mud coasts: a brief overview

Author:

Yu QianORCID,Jia Jianjun,Gao Shu

Abstract

AbstractGreen sea dykes, also known as ecosystem-based sea dykes, represent a novel type of coastal defense consisting of both traditional structural engineering and coastal ecosystems, designed to cope with the future trends of sea level rise and intensified storms. Here we focus on the mid-latitude mud coasts (eastern China in particular), which face the most prominent risks of storm surge, storm-induced giant waves, and shoreline erosion, and summarizes the scientific basis of green sea dykes and the current status of engineering practices. We show that the basic mechanisms of nearshore wave energy dissipation include bottom friction, sediment transport, and form drag. These explain the wave damping capacity of oyster reefs and salt marshes on mud coasts. In tidal flat environments, oyster growth increases frictional resistance and even causes wave breaking; the resuspension and transport of fine-grained sediments on salt marsh beds and the movement or resistance to hydrodynamic forcing of salt marsh vegetation stems effectively dissipate wave kinetic energy, and their efficiency increases with the elevation of the bed surface. Based on the wave damping capacity of oyster reefs and salt marshes on mud coasts, ecosystem-based sea dykes are being built in combination with traditional structured sea dykes. By utilizing natural tidal flats outside the dykes or implementing artificial modification projects, a certain scale of salt marshes and/or oyster reefs can be maintained, which serve to protect the sea dykes and enhance their wave resistance functions. From the perspective of system optimization, it is necessary to further improve the efficiency and sustainability of green sea dykes under constraints such as regional environment characteristics, ecosystem health, investment capacity, and ecological resilience. Related scientific issues include the theorization of the wave damping process of salt marshes, the niche and scale control of oyster reef and salt marsh ecosystems, the establishment of engineering standards and the design of the optimal form of sea dykes.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3