Skip to main content
Log in

A Review on Brown Carbon Aerosol in China: From Molecular Composition to Climate Impact

  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As an important type of light-absorbing aerosol in the atmosphere, brown carbon (BrC) is an effective driver for climate change. Field observations of BrC typically involve the extraction of filter samples (e.g., using water and methanol), followed by optical and chemical analyses. This review summarizes the concentration measurements, optical properties, and chemical characteristics of BrC in China, based on results from the extraction approach.

Recent Findings

We started with measurement techniques for the determination of BrC concentration and compared the extraction efficiencies of different solvents. Then we investigated the temporal and spatial variations of BrC’s absorption Ångström exponent (AAE) and mass absorption efficiency at 365 nm (MAE365), two parameters relevant to climate studies. AAE and MAE365 were found to be mainly influenced by the type of solvent used and BrC sources, respectively. Using the observed AAE and MAE365, BrC was demonstrated to be a non-negligible contributor to climate forcing. Finally, BrC chromophores were discussed on a molecular level, with focus on the nitrogen-containing compounds and polycyclic aromatic hydrocarbons.

Summary

Despite studies on BrC concentrations measurements were widely conducted, standardized methods remain inconclusive. Regarding the optical properties of BrC, MAE365 exhibited significant temporal and spatial patterns, while AAE showed the opposite results. Through chemical characterization, BrC chromophores were identified and their association with optical properties was highlighted. This review contributes to the understanding of BrC properties and has implications for future studies on BrC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Bond TC, Bergstrom RW. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci Technol. 2006;40:27–67. https://doi.org/10.1080/02786820500421521.

    Article  ADS  CAS  Google Scholar 

  2. Laskin A, Laskin J, Nizkorodov SA. Chemistry of atmospheric brown carbon. Chem Rev. 2015;115:4335–82. https://doi.org/10.1021/cr5006167.

    Article  CAS  PubMed  Google Scholar 

  3. Ramanathan V, Li F, Ramana MV, Praveen PS, Kim D, Corrigan CE, et al. Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res-Atmos. 2007;112.https://doi.org/10.1029/2006jd008124.

    Article  Google Scholar 

  4. Feng Y, Ramanathan V, Kotamarthi VR. Brown carbon: a significant atmospheric absorber of solar radiation? Atmos Chem Phys. 2013;13:8607–21. https://doi.org/10.5194/acp-13-8607-2013.

    Article  ADS  CAS  Google Scholar 

  5. Hansen J, Sato M, Ruedy R, Lacis A, Asamoah K, Beckford K, et al. Forcings and chaos in interannual to decadal climate change. J Geophys Res-Atmos. 1997;102:25679–720. https://doi.org/10.1029/97jd01495.

    Article  ADS  CAS  Google Scholar 

  6. Doherty SJ, Warren SG, Grenfell TC, Clarke AD, Brandt RE. Light-absorbing impurities in Arctic snow. Atmos Chem Phys. 2010;10:11647–80. https://doi.org/10.5194/acp-10-11647-2010.

    Article  ADS  CAS  Google Scholar 

  7. Petzold A, Ogren JA, Fiebig M, Laj P, Li SM, Baltensperger U, et al. Recommendations for reporting “black carbon” measurements. Atmos Chem Phys. 2013;13:8365–79. https://doi.org/10.5194/acp-13-8365-2013.

    Article  ADS  CAS  Google Scholar 

  8. Liu J, Bergin M, Guo H, King L, Kotra N, Edgerton E, et al. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmos Chem Phys. 2013;13:12389–404. https://doi.org/10.5194/acp-13-12389-2013.

    Article  ADS  CAS  Google Scholar 

  9. Kumar NK, Corbin JC, Bruns EA, Massabó D, Slowik JG, Drinovec L, et al. Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmos Chem Phys. 2018;18:17843–61. https://doi.org/10.5194/acp-18-17843-2018.

    Article  ADS  CAS  Google Scholar 

  10. Zeng L, Dibb J, Scheuer E, Katich JM, Schwarz JP, Bourgeois I, et al. Characteristics and evolution of brown carbon in western United States wildfires. Atmos Chem Phys. 2022;22:8009–36. https://doi.org/10.5194/acp-22-8009-2022.

    Article  ADS  CAS  Google Scholar 

  11. Chen KP, Raeofy N, Lum M, Mayorga R, Woods M, Bahreini R, et al. Solvent effects on chemical composition and optical properties of extracted secondary brown carbon constituents. Aerosol Sci Technol. 2022;56:917–30. https://doi.org/10.1080/02786826.2022.2100734.

    Article  ADS  CAS  Google Scholar 

  12. Cheng Z, Atwi K, Hajj OE, Ijeli I, Fischer DA, Smith G, et al. Discrepancies between brown carbon light-absorption properties retrieved from online and offline measurements. Aerosol Sci Technol. 2020;55:92–103. https://doi.org/10.1080/02786826.2020.1820940.

    Article  ADS  CAS  Google Scholar 

  13. Arola A, Schuster G, Myhre G, Kazadzis S, Dey S, Tripathi SN. Inferring absorbing organic carbon content from AERONET data. Atmos Chem Phys. 2011;11:215–25. https://doi.org/10.5194/acp-11-215-2011.

    Article  ADS  CAS  Google Scholar 

  14. Mo Y, Li J, Cheng Z, Zhong G, Zhu S, Tian C, et al. Dual carbon isotope-based source apportionment and light absorption properties of water-soluble organic carbon in PM2.5 over China. Geophys Res-Atmos. 2021;126. https://doi.org/10.1029/2020jd033920.

    Article  Google Scholar 

  15. Hecobian A, Zhang X, Zheng M, Frank N, Edgerton ES, Weber RJ. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos Chem Phys. 2010;10:5965–77. https://doi.org/10.5194/acp-10-5965-2010.

    Article  ADS  CAS  Google Scholar 

  16. Xie M, Chen X, Holder AL, Hays MD, Lewandowski M, Offenberg JH, et al. Light absorption of organic carbon and its sources at a southeastern US location in summer. Environ Pollut. 2019;244:38–46. https://doi.org/10.1016/j.envpol.2018.09.125.

    Article  CAS  PubMed  Google Scholar 

  17. Choudhary V, Rajput P, Singh DK, Singh AK, Gupta T. Light absorption characteristics of brown carbon during foggy and non-foggy episodes over the Indo-Gangetic Plain. Atmos Pollut Res. 2018;9:494–501. https://doi.org/10.1016/j.apr.2017.11.012.

    Article  CAS  Google Scholar 

  18. Voliotis A, Prokes R, Lammel G, Samara C. New insights on humic-like substances associated with wintertime urban aerosols from central and southern Europe: size-resolved chemical characterization and optical properties. Atmos Environ. 2017;166:286–99. https://doi.org/10.1016/j.atmosenv.2017.07.024.

    Article  ADS  CAS  Google Scholar 

  19. Wang L, Li Z, Tian Q, Ma Y, Zhang F, Zhang Y, et al. Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground-based remote sensing data of sun-sky radiometers. Geophys Res-Atmos. 2013;118:6534–43. https://doi.org/10.1002/jgrd.50356.

    Article  ADS  CAS  Google Scholar 

  20. Yan J, Wang X, Gong P, Wang C, Cong Z. Review of brown carbon aerosols: recent progress and perspectives. Sci Total Environ. 2018;634:1475–85. https://doi.org/10.1016/j.scitotenv.2018.04.083.

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Moise T, Flores JM, Rudich Y. Optical properties of secondary organic aerosols and their changes by chemical processes. Chem Rev. 2015;115:4400–39. https://doi.org/10.1021/cr5005259.

    Article  CAS  PubMed  Google Scholar 

  22. Wu G-M, Cong Z-Y, Kang S-C, Kawamura K, Fu P-Q, Zhang Y-L, et al. Brown carbon in the cryosphere: current knowledge and perspective. Adv Clim Chang Res. 2016;7:82–9. https://doi.org/10.1016/j.accre.2016.06.002.

    Article  Google Scholar 

  23. Wang Q, Zhou Y, Ma N, Zhu Y, Zhao X, Zhu S, et al. Review of brown carbon aerosols in China: pollution level, optical properties, and emissions. Geophys Res-Atmos. 2022;127.https://doi.org/10.1029/2021jd035473.

    Article  CAS  Google Scholar 

  24. Cheng Y, He K-b, Du Z-y, Engling G, Liu J-m, Ma Y-l, et al. The characteristics of brown carbon aerosol during winter in Beijing. Atmos Environ. 2016;127:355–64. https://doi.org/10.1016/j.atmosenv.2015.12.035.

    Article  ADS  CAS  Google Scholar 

  25. Yan C, Zheng M, Sullivan AP, Bosch C, Desyaterik Y, Andersson A, et al. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: biomass burning contributions. Atmos Environ. 2015;121:4–12. https://doi.org/10.1016/j.atmosenv.2015.05.005.

    Article  ADS  CAS  Google Scholar 

  26. Huang RJ, Yang L, Cao J, Chen Y, Chen Q, Li Y, et al. Brown carbon aerosol in urban Xi’an, Northwest China: the composition and light absorption properties. Environ Sci Technol. 2018;52:6825–33. https://doi.org/10.1021/acs.est.8b02386.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yuan W, Huang R-J, Yang L, Guo J, Chen Z, Duan J, et al. Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi’an. Northwestern China Atmos Chem Phys. 2020;20:5129–44. https://doi.org/10.5194/acp-20-5129-2020.

    Article  ADS  CAS  Google Scholar 

  28. Liu X, Zhang Y-L, Peng Y, Xu L, Zhu C, Cao F, et al. Chemical and optical properties of carbonaceous aerosols in Nanjing, Eastern China: regionally transported biomass burning contribution. Atmos Chem Phys. 2019;19:11213–33. https://doi.org/10.5194/acp-19-11213-2019.

    Article  ADS  CAS  Google Scholar 

  29. Wu G, Wan X, Ram K, Li P, Liu B, Yin Y, et al. Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau. Environ Pollut. 2020;257: 113616. https://doi.org/10.1016/j.envpol.2019.113616.

    Article  CAS  PubMed  Google Scholar 

  30. Xu J, Hettiyadura APS, Liu Y, Zhang X, Kang S, Laskin A. Regional differences of chemical composition and optical properties of aerosols in the Tibetan Plateau. Geophys Res-Atmos. 2020;125.https://doi.org/10.1029/2019jd031226.

    Article  Google Scholar 

  31. Yang M, Howell SG, Zhuang J, Huebert BJ. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China - interpretations of atmospheric measurements during EAST-AIRE. Atmos Chem Phys. 2009;9:2035–50. https://doi.org/10.5194/acp-9-2035-2009.

    Article  ADS  CAS  Google Scholar 

  32. Kiss G, Varga B, Galambos I, Ganszky I. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol. Geophys Res-Atmos 2002;107. https://doi.org/10.1029/2001jd000603.

  33. Asa-Awuku A, Engelhart GJ, Lee BH, Pandis SN, Nenes A. Relating CCN activity, volatility, and droplet growth kinetics of beta-caryophyllene secondary organic aerosol. Atmos Chem Phys. 2009;9:795–812. https://doi.org/10.5194/acp-9-795-2009.

    Article  ADS  CAS  Google Scholar 

  34. Ervens B, Feingold G, Kreidenweis SM. Influence of water-soluble organic carbon on cloud drop number concentration. J Geophys Res-Atmos. 2005;110. https://doi.org/10.1029/2004jd005634.

    Article  Google Scholar 

  35. Weber RJ, Sullivan AP, Peltier RE, Russell A, Yan B, Zheng M, et al. A study of secondary organic aerosol formation in the anthropogenic-influenced southeastern United States. J Geophys Res-Atmos. 2007;112. https://doi.org/10.1029/2007jd008408.

    Article  Google Scholar 

  36. Kondo Y, Miyazaki Y, Takegawa N, Miyakawa T, Weber RJ, Jimenez JL, et al. Oxygenated and water-soluble organic aerosols in Tokyo. J Geophys Res-Atmos. 2007;112. https://doi.org/10.1029/2006jd007056.

    Article  Google Scholar 

  37. Cheng Y, He KB, Zheng M, Duan FK, Du ZY, Ma YL, et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing. China Atmos Chem Phys. 2011;11:11497–510. https://doi.org/10.5194/acp-11-11497-2011.

    Article  ADS  CAS  Google Scholar 

  38. Cheng Y, He KB, Engling G, Weber R, Liu JM, Du ZY, et al. Brown and black carbon in Beijing aerosol: implications for the effects of brown coating on light absorption by black carbon. Sci Total Environ. 2017;599–600:1047–55. https://doi.org/10.1016/j.scitotenv.2017.05.061.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Chen Y, Ge X, Chen H, Xie X, Chen Y, Wang J, et al. Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing. China Atmos Environ. 2018;187:230–40. https://doi.org/10.1016/j.atmosenv.2018.06.002.

    Article  ADS  CAS  Google Scholar 

  40. Chen Y, Xie X, Shi Z, Li Y, Gai X, Wang J, et al. Brown carbon in atmospheric fine particles in Yangzhou, China: light absorption properties and source apportionment. Atmos Res. 2020;244. https://doi.org/10.1016/j.atmosres.2020.105028.

    Article  CAS  Google Scholar 

  41. Wu C, Wang G, Li J, Li J, Cao C, Ge S, et al. The characteristics of atmospheric brown carbon in Xi’an, inland China: sources, size distributions and optical properties. Atmos Chem Phys. 2020;20:2017–30. https://doi.org/10.5194/acp-20-2017-2020.

    Article  ADS  CAS  Google Scholar 

  42. Li J, Zhang Q, Wang G, Li J, Wu C, Liu L, et al. Optical properties and molecular compositions of water-soluble and water-insoluble brown carbon (BrC) aerosols in Northwest China. Atmos Chem Phys. 2020;20:4889–904. https://doi.org/10.5194/acp-20-4889-2020.

    Article  ADS  CAS  Google Scholar 

  43. Luo Y, Zhou X, Zhang J, Xue L, Chen T, Zheng P, et al. Characteristics of airborne water-soluble organic carbon (WSOC) at a background site of the North China Plain. Atmos Res. 2020;231. https://doi.org/10.1016/j.atmosres.2019.104668.

    Article  CAS  Google Scholar 

  44. Zhang L, Son JH, Bai Z, Zhang W, Li L, Wang L, et al. Characterizing atmospheric brown carbon and its emission sources during wintertime in Shanghai. China Atmosphere. 2022;13. https://doi.org/10.3390/atmos13060991.

    Article  CAS  Google Scholar 

  45. Zhang J, Qi A, Wang Q, Huang Q, Yao S, Li J, et al. Characteristics of water-soluble organic carbon (WSOC) in PM2.5 in inland and coastal cities, China. Atmos Pollut Res. 2022;13. https://doi.org/10.1016/j.apr.2022.101447.

    Article  CAS  Google Scholar 

  46. Chen Y, Bond TC. Light absorption by organic carbon from wood combustion. Atmos Chem Phys. 2010;10:1773–87. https://doi.org/10.5194/acp-10-1773-2010.

    Article  ADS  CAS  Google Scholar 

  47. Polidori A, Turpin BJ, Davidson CI, Rodenburg LA, Maimone F. Organic PM2.5: Fractionation by polarity, FTIR spectroscopy, and OM/OC ratio for the Pittsburgh aerosol. Aerosol Sci Technol. 2008;42:233–46. https://doi.org/10.1080/02786820801958767.

    Article  ADS  CAS  Google Scholar 

  48. Cheng Y, He KB, Duan FK, Du ZY, Zheng M, Ma YL. Characterization of carbonaceous aerosol by the stepwise-extraction thermal-optical-transmittance (SE-TOT) method. Atmos Environ. 2012;59:551–8. https://doi.org/10.1016/j.atmosenv.2012.05.010.

    Article  ADS  CAS  Google Scholar 

  49. Yan F, Kang S, Sillanpaa M, Hu Z, Gao S, Chen P, et al. A new method for extraction of methanol-soluble brown carbon: implications for investigation of its light absorption ability. Environ Pollut. 2020;262: 114300. https://doi.org/10.1016/j.envpol.2020.114300.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Jiang B, Wang Z, Liang Y, Zhang Y, Xu C, et al. Molecular characterisation of ambient aerosols by sequential solvent extractions and high-resolution mass spectrometry. Environ Chem. 2018;15. https://doi.org/10.1071/en17197.

    Article  Google Scholar 

  51. Bai Z, Zhang LY, Cheng Y, Zhang W, Mao JF, Chen H, et al. Water/methanol-insoluble brown carbon can dominate aerosol-enhanced light absorption in port cities. Environ Sci Technol. 2020;54:14889–98. https://doi.org/10.1021/acs.est.0c03844.

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Kristensen K, Glasius M. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring. Atmos Environ. 2011;45:4546–56. https://doi.org/10.1016/j.atmosenv.2011.05.063.

    Article  ADS  CAS  Google Scholar 

  53. Walser ML, Desyaterik Y, Laskin J, Laskin A, Nizkorodov SA. High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Phys Chem Chem Phys. 2008;10:1009–22. https://doi.org/10.1039/b712620d.

    Article  CAS  PubMed  Google Scholar 

  54. Hu MX, Chen KP, Qiu JT, Lin YH, Tonokura K, Enami S. Temperature dependence of aqueous-phase decomposition of alpha-hydroxyalkyl-hydroperoxides. J Phys Chem A. 2020;124:10288–95. https://doi.org/10.1021/acs.jpca.0c09862.

    Article  CAS  PubMed  Google Scholar 

  55. Apicella B, Carpentieri A, Alfe M, Barbella R, Tregrossi A, Pucci P, et al. Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame. Proc Combust Inst. 2007;31:547–53. https://doi.org/10.1016/j.proci.2006.08.014.

    Article  CAS  Google Scholar 

  56. Xu Z, Feng W, Wang Y, Ye H, Wang Y, Liao H, et al. Potential underestimation of ambient brown carbon absorption based on the methanol extraction method and its impacts on source analysis. Atmos Chem Phys. 2022;22:13739–52. https://doi.org/10.5194/acp-22-13739-2022.

    Article  ADS  CAS  Google Scholar 

  57. Saleh R, Hennigan CJ, McMeeking GR, Chuang WK, Robinson ES, Coe H, et al. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos Chem Phys. 2013;13:7683–93. https://doi.org/10.5194/acp-13-7683-2013.

    Article  ADS  CAS  Google Scholar 

  58. Li D, Wu C, Zhang S, Lei Y, Lv S, Du W, et al. Significant coal combustion contribution to water-soluble brown carbon during winter in Xingtai, China: Optical properties and sources. J Environ Sci (China). 2023;124:892–900. https://doi.org/10.1016/j.jes.2022.02.026.

    Article  CAS  PubMed  Google Scholar 

  59. Deng JJ, Ma H, Wang XF, Zhong SJ, Zhang ZM, Zhu JL, et al. Measurement report: optical properties and sources of water-soluble brown carbon in Tianjin, North China insights from organic molecular compositions. Atmos Chem Phys. 2022;22:6449–70. https://doi.org/10.5194/acp-22-6449-2022.

    Article  ADS  CAS  Google Scholar 

  60. Du Z, He K, Cheng Y, Duan F, Ma Y, Liu J, et al. A yearlong study of water-soluble organic carbon in Beijing II: light absorption properties. Atmos Environ. 2014;89:235–41. https://doi.org/10.1016/j.atmosenv.2014.02.022.

    Article  ADS  CAS  Google Scholar 

  61. Zhang X, Lin Y-H, Surratt JD, Weber RJ. Sources, Composition and absorption angstrom exponent of light-absorbing organic components in aerosol extracts from the Los Angeles Basin. Environ Sci Technol. 2013;47:3685–93. https://doi.org/10.1021/es305047b.

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Wu G, Wan X, Gao S, Fu P, Yin Y, Li G, et al. Humic-like substances (HULIS) in aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): abundance, light absorption properties, and sources. Environ Sci Technol. 2018;52:7203–11. https://doi.org/10.1021/acs.est.8b01251.

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Zhu CS, Cao JJ, Huang RJ, Shen ZX, Wang QY, Zhang NN. Light absorption properties of brown carbon over the southeastern Tibetan Plateau. Sci Total Environ. 2018;625:246–51. https://doi.org/10.1016/j.scitotenv.2017.12.183.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Chen Q, Mu Z, Song W, Wang Y, Yang Z, Zhang L, et al. Size-resolved characterization of the chromophores in atmospheric particulate matter from a typical coal-burning city in China. Geophys Res-Atmos. 2019;124:10546–63. https://doi.org/10.1029/2019jd031149.

    Article  ADS  CAS  Google Scholar 

  65. Geng X, Mo Y, Li J, Zhong G, Tang J, Jiang H, et al. Source apportionment of water-soluble brown carbon in aerosols over the northern South China Sea: influence from land outflow, SOA formation and marine emission. Atmos Environ. 2020;229. https://doi.org/10.1016/j.atmosenv.2020.117484.

    Article  CAS  Google Scholar 

  66. Tao Y, Sun N, Li X, Zhao Z, Ma S, Huang H, et al. Chemical and optical characteristics and sources of PM2.5 humic-like substances at industrial and suburban sites in Changzhou. China Atmosphere. 2021;12. https://doi.org/10.3390/atmos12020276.

    Article  CAS  Google Scholar 

  67. Hoffer A, Gelencser A, Guyon P, Kiss G, Schmid O, Frank GP, et al. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos Chem Phys. 2006;6:3563–70. https://doi.org/10.5194/acp-6-3563-2006.

    Article  ADS  CAS  Google Scholar 

  68. Yuan W, Huang RJ, Yang L, Ni H, Wang T, Cao W, et al. Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi’an. Northwest China Sci Total Environ. 2021;789: 147902. https://doi.org/10.1016/j.scitotenv.2021.147902.

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Li M, Fan X, Zhu M, Zou C, Song J, Wei S, et al. Abundance and light absorption properties of brown carbon emitted from residential coal combustion in China. Environ Sci Technol. 2019;53:595–603. https://doi.org/10.1021/acs.est.8b05630.

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Du Z, He K, Cheng Y, Duan F, Ma Y, Liu J, et al. A yearlong study of water-soluble organic carbon in Beijing: I sources and its primary vs secondary nature. Atmos Environ. 2014;92:514–21. https://doi.org/10.1016/j.atmosenv.2014.04.060.

    Article  ADS  CAS  Google Scholar 

  71. Cheng Y, Cao XB, Liu JM, Yu QQ, Wang P, Yan CQ, et al. Primary nature of brown carbon absorption in a frigid atmosphere with strong haze chemistry. Environ Res. 2022;204: 112324. https://doi.org/10.1016/j.envres.2021.112324.

    Article  CAS  PubMed  Google Scholar 

  72. Xie X, Chen Y, Nie D, Liu Y, Liu Y, Lei R, et al. Light-absorbing and fluorescent properties of atmospheric brown carbon: a case study in Nanjing. China Chemosphere. 2020;251: 126350. https://doi.org/10.1016/j.chemosphere.2020.126350.

    Article  CAS  PubMed  Google Scholar 

  73. Chen D, Zhao Y, Lyu R, Wu R, Dai L, Zhao Y, et al. Seasonal and spatial variations of optical properties of light absorbing carbon and its influencing factors in a typical polluted city in Yangtze River Delta. China Atmos Environ. 2019;199:45–54. https://doi.org/10.1016/j.atmosenv.2018.11.022.

    Article  ADS  CAS  Google Scholar 

  74. Dinar E, Riziq AA, Spindler C, Erlick C, Kiss G, Rudich Y. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday Discuss. 2008;137:279–95. https://doi.org/10.1039/b703111d.

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Zhang Y, Xu J, Shi J, Xie C, Ge X, Wang J, et al. Light absorption by water-soluble organic carbon in atmospheric fine particles in the central Tibetan Plateau. Environ Sci Pollut Res. 2017;24:21386–97. https://doi.org/10.1007/s11356-017-9688-8.

    Article  CAS  Google Scholar 

  76. Wong JPS, Nenes A, Weber RJ. Changes in light absorptivity of molecular weight separated brown carbon due to photolytic aging. Environ Sci Technol. 2017;51:8414–21. https://doi.org/10.1021/acs.est.7b01739.

    Article  ADS  CAS  PubMed  Google Scholar 

  77. Wong JPS, Tsagkaraki M, Tsiodra I, Mihalopoulos N, Violaki K, Kanakidou M, et al. Atmospheric evolution of molecular-weight-separated brown carbon from biomass burning. Atmos Chem Phys. 2019;19:7319–34. https://doi.org/10.5194/acp-19-7319-2019.

    Article  ADS  CAS  Google Scholar 

  78. Forrister H, Liu J, Scheuer E, Dibb J, Ziemba L, Thornhill KL, et al. Evolution of brown carbon in wildfire plumes. Geophys Res Lett. 2015;42:4623–30. https://doi.org/10.1002/2015gl063897.

    Article  ADS  CAS  Google Scholar 

  79. Sumlin BJ, Pandey A, Walker MJ, Pattison RS, Williams BJ, Chakrabarty RK. Atmospheric photooxidation diminishes light absorption by primary brown carbon aerosol from biomass burning. Environ Sci Technol Lett. 2017;4:540–5. https://doi.org/10.1021/acs.estlett.7b00393.

    Article  CAS  Google Scholar 

  80. Zhao R, Lee AKY, Huang L, Li X, Yang F, Abbatt JPD. Photochemical processing of aqueous atmospheric brown carbon. Atmos Chem Phys. 2015;15:6087–100. https://doi.org/10.5194/acp-15-6087-2015.

    Article  ADS  CAS  Google Scholar 

  81. Liu JM, Lin P, Laskin A, Laskin J, Kathmann SM, Wise M, et al. Optical properties and aging of light-absorbing secondary organic aerosol. Atmos Chem Phys. 2016;16:12815–27. https://doi.org/10.5194/acp-16-12815-2016.

    Article  ADS  CAS  Google Scholar 

  82. Liu J, Mo Y, Ding P, Li J, Shen C, Zhang G. Dual carbon isotopes ((14)C and (13)C) and optical properties of WSOC and HULIS-C during winter in Guangzhou. China Sci Total Environ. 2018;633:1571–8. https://doi.org/10.1016/j.scitotenv.2018.03.293.

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Chung CE, Ramanathan V, Decremer D. Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci USA. 2012;109:11624–9. https://doi.org/10.1073/pnas.1203707109.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  84. Kirchstetter TW, Thatcher TL. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmos Chem Phys. 2012;12:6067–72. https://doi.org/10.5194/acp-12-6067-2012.

    Article  ADS  CAS  Google Scholar 

  85. Kirillova EN, Andersson A, Tiwari S, Srivastava AK, Bisht DS, Gustafsson O. Water-soluble organic carbon aerosols during a full New Delhi winter: isotope-based source apportionment and optical properties. J Geophys Res-Atmos. 2014;119:3476–85. https://doi.org/10.1002/2013jd020041.

    Article  ADS  CAS  Google Scholar 

  86. Levinson R, Akbari H, Berdahl P. Measuring solar reflectance-part I: defining a metric that accurately predicts solar heat gain. Sol Energy. 2010;84:1717–44. https://doi.org/10.1016/j.solener.2010.04.018.

    Article  ADS  Google Scholar 

  87. Lei Y, Shen Z, Wang Q, Zhang T, Cao J, Sun J, et al. Optical characteristics and source apportionment of brown carbon in winter PM2.5 over Yulin in Northern China. Atmos Res. 2018;213:27–33. https://doi.org/10.1016/j.atmosres.2018.05.018.

    Article  CAS  Google Scholar 

  88. Wen H, Zhou Y, Xu X, Wang T, Chen Q, Chen Q, et al. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: optical properties, chemical compositions, and potential sources. Sci Total Environ. 2021;789: 147971. https://doi.org/10.1016/j.scitotenv.2021.147971.

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Zhang T, Huang S, Wang D, Sun J, Zhang Q, Xu H, et al. Seasonal and diurnal variation of PM2.5 HULIS over Xi’an in Northwest China: optical properties, chemical functional group, and relationship with reactive oxygen species (ROS). Atmos Environ. 2022;268. https://doi.org/10.1016/j.atmosenv.2021.118782.

    Article  CAS  Google Scholar 

  90. Chen Q, Ikemori F, Nakamura Y, Vodicka P, Kawamura K, Mochida M. Structural and light-absorption characteristics of complex water-insoluble organic mixtures in urban submicrometer aerosols. Environ Sci Technol. 2017;51:8293–303. https://doi.org/10.1021/acs.est.7b01630.

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Jiang H, Li J, Sun R, Tian C, Tang J, Jiang B, et al. Molecular dynamics and light absorption properties of atmospheric dissolved organic matter. Environ Sci Technol. 2021;55:10268–79. https://doi.org/10.1021/acs.est.1c01770.

    Article  ADS  CAS  PubMed  Google Scholar 

  92. Zeng Y, Ning Y, Shen Z, Zhang L, Zhang T, Lei Y, et al. The roles of N, S, and O in molecular absorption features of brown carbon in PM2.5 in a typical semi-arid megacity in Northwestern China. Geophys Res-Atmos. 2021;126. https://doi.org/10.1029/2021jd034791.

    Article  CAS  Google Scholar 

  93. Lin P, Fleming LT, Nizkorodov SA, Laskin J, Laskin A. Comprehensive molecular characterization of atmospheric brown carbon by high resolution mass spectrometry with electrospray and atmospheric pressure photoionization. Anal Chem. 2018;90:12493–502. https://doi.org/10.1021/acs.analchem.8b02177.

    Article  CAS  PubMed  Google Scholar 

  94. Yan C, Zheng M, Desyaterik Y, Sullivan AP, Wu Y, Collett JL. Molecular characterization of water-soluble brown carbon chromophores in Beijing. China Geophys Res-Atmos. 2020;125. https://doi.org/10.1029/2019jd032018.

    Article  Google Scholar 

  95. Bai Z, Wen W, Zhang W, Li L, Wang L, Chen J. The light absorbing and molecule characteristic of PM2.5 brown carbon observed in urban Shanghai. Environ Pollut. 2023;318:120874. https://doi.org/10.1016/j.envpol.2022.120874.

    Article  CAS  PubMed  Google Scholar 

  96. Zeng Y, Shen Z, Takahama S, Zhang L, Zhang T, Lei Y, et al. Molecular absorption and evolution mechanisms of PM2.5 brown carbon revealed by electrospray ionization Fourier transform–ion cyclotron resonance mass spectrometry during a severe winter pollution episode in Xi’an. China Geophys Res Lett. 2020;47. https://doi.org/10.1029/2020gl087977.

    Article  Google Scholar 

  97. Xu J, Hettiyadura APS, Liu Y, Zhang X, Kang S, Laskin A. Atmospheric brown carbon on the Tibetan Plateau: regional differences in chemical composition and light absorption properties. Environ Sci Technol Lett. 2022;9:219–25. https://doi.org/10.1021/acs.estlett.2c00016.

    Article  CAS  Google Scholar 

  98. Wang X, Hayeck N, Brüggemann M, Abis L, Riva M, Lu Y, et al. Chemical characteristics and brown carbon chromophores of atmospheric organic aerosols over the Yangtze River channel: a cruise campaign. Geophys Res-Atmos. 2020;125. https://doi.org/10.1029/2020jd032497.

    Article  Google Scholar 

  99. Jiang H, Li J, Chen D, Tang J, Cheng Z, Mo Y, et al. Biomass burning organic aerosols significantly influence the light absorption properties of polarity-dependent organic compounds in the Pearl River Delta Region. China Environ Int. 2020;144: 106079. https://doi.org/10.1016/j.envint.2020.106079.

    Article  CAS  PubMed  Google Scholar 

  100. Huang R-J, Yang L, Shen J, Yuan W, Gong Y, Ni H, et al. Chromophoric fingerprinting of brown carbon from residential biomass burning. Environ Sci Technol Lett. 2021;9:102–11. https://doi.org/10.1021/acs.estlett.1c00837.

    Article  CAS  Google Scholar 

  101. Lin P, Aiona PK, Li Y, Shiraiwa M, Laskin J, Nizkorodov SA, et al. Molecular characterization of brown carbon in biomass burning aerosol particles. Environ Sci Technol. 2016;50:11815–24. https://doi.org/10.1021/acs.est.6b03024.

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Song J, Li M, Jiang B, Wei S, Fan X, Peng P. Molecular characterization of water-soluble humic like substances in smoke particles emitted from combustion of biomass materials and coal using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Environ Sci Technol. 2018;52:2575–85. https://doi.org/10.1021/acs.est.7b06126.

    Article  ADS  CAS  PubMed  Google Scholar 

  103. West CP, Hettiyadura APS, Darmody A, Mahamuni G, Davis J, Novosselov I, et al. Molecular composition and the optical properties of brown carbon generated by the ethane flame. ACS Earth Space Chem. 2020;4:1090–103. https://doi.org/10.1021/acsearthspacechem.0c00095.

    Article  ADS  CAS  Google Scholar 

  104. Lin P, Liu J, Shilling JE, Kathmann SM, Laskin J, Laskin A. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys Chem Chem Phys. 2015;17:23312–25. https://doi.org/10.1039/c5cp02563j.

    Article  CAS  PubMed  Google Scholar 

  105. Siemens K, Morales A, He Q, Li C, Hettiyadura APS, Rudich Y, et al. Molecular analysis of secondary brown carbon produced from the photooxidation of naphthalene. Environ Sci Technol. 2022;56:3340–53. https://doi.org/10.1021/acs.est.1c03135.

    Article  ADS  CAS  PubMed  Google Scholar 

  106. He Q, Li C, Siemens K, Morales AC, Hettiyadura APS, Laskin A, et al. Optical properties of secondary organic aerosol produced by photooxidation of naphthalene under NOx condition. Environ Sci Technol. 2022;56:4816–27. https://doi.org/10.1021/acs.est.1c07328.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lin P, Laskin J, Nizkorodov SA, Laskin A. Revealing brown carbon chromophores produced in reactions of methylglyoxal with ammonium sulfate. Environ Sci Technol. 2015;49:14257–66. https://doi.org/10.1021/acs.est.5b03608.

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Smith DM, Cui T, Fiddler MN, Pokhrel RP, Surratt JD, Bililign S. Laboratory studies of fresh and aged biomass burning aerosol emitted from east African biomass fuels – part 2: chemical properties and characterization. Atmos Chem Phys. 2020;20:10169–91. https://doi.org/10.5194/acp-20-10169-2020.

    Article  ADS  CAS  Google Scholar 

  109. Lin P, Bluvshtein N, Rudich Y, Nizkorodov SA, Laskin J, Laskin A. Molecular chemistry of atmospheric brown carbon inferred from a nationwide biomass burning event. Environ Sci Technol. 2017;51:11561–70. https://doi.org/10.1021/acs.est.7b02276.

    Article  ADS  CAS  PubMed  Google Scholar 

  110. Sengupta D, Samburova V, Bhattarai C, Kirillova E, Mazzoleni L, Iaukea-Lum M, et al. Light absorption by polar and non-polar aerosol compounds from laboratory biomass combustion. Atmos Chem Phys. 2018;18:10849–67. https://doi.org/10.5194/acp-18-10849-2018.

    Article  ADS  CAS  Google Scholar 

  111. Harrison MAJ, Barra S, Borghesi D, Vione D, Arsene C, Olariu RL. Nitrated phenols in the atmosphere: a review. Atmos Environ. 2005;39:231–48. https://doi.org/10.1016/j.atmosenv.2004.09.044.

    Article  ADS  CAS  Google Scholar 

  112. Iinuma Y, Boge O, Grafe R, Herrmann H. Methyl-nitrocatechols: atmospheric tracer compounds for biomass burning secondary organic aerosols. Environ Sci Technol. 2010;44:8453–9. https://doi.org/10.1021/es102938a.

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Samburova V, Connolly J, Gyawali M, Yatavelli RLN, Watts AC, Chakrabarty RK, et al. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci Total Environ. 2016;568:391–401. https://doi.org/10.1016/j.scitotenv.2016.06.026.

    Article  ADS  CAS  PubMed  Google Scholar 

  114. Aiona PK, Lee HJ, Lin P, Heller F, Laskin A, Laskin J, et al. A role for 2-methyl pyrrole in the browning of 4-oxopentanal and limonene secondary organic aerosol. Environ Sci Technol. 2017;51:11048–56. https://doi.org/10.1021/acs.est.7b02293.

    Article  ADS  CAS  PubMed  Google Scholar 

  115. Baduel C, Voisin D, Jaffrezo JL. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmos Chem Phys. 2010;10:4085–95. https://doi.org/10.5194/acp-10-4085-2010.

    Article  ADS  CAS  Google Scholar 

  116. Duarte R, Pio CA, Duarte AC. Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions. Anal Chim Acta. 2005;530:7–14. https://doi.org/10.1016/j.aca.2004.08.049.

    Article  CAS  Google Scholar 

  117. Zhang T, Shen ZX, Zhang LM, Tang ZY, Zhang Q, Chen QC, et al. PM2.5 Humic-like substances over Xi’an, China: optical properties, chemical functional group, and source identification. Atmos Res. 2020;234. https://doi.org/10.1016/j.atmosres.2019.104784.

    Article  CAS  Google Scholar 

  118. Zhang T, Shen ZX, Zeng YL, Cheng CL, Wang DW, Zhang Q, et al. Light absorption properties and molecular profiles of HULIS in PM2.5 emitted from biomass burning in traditional “Heated Kang” in Northwest China. Sci Total Environ. 2021;776. https://doi.org/10.1016/j.scitotenv.2021.146014.

    Article  CAS  Google Scholar 

  119. Huo YQ, Li M, Jiang MH, Qi WM. Light absorption properties of HULIS in primary particulate matter produced by crop straw combustion under different moisture contents and stacking modes. Atmos Environ. 2018;191:490–9. https://doi.org/10.1016/j.atmosenv.2018.08.038.

    Article  ADS  CAS  Google Scholar 

  120. Liu J, Scheuer E, Dibb J, Ziemba LD, Thornhill KL, Anderson BE, et al. Brown carbon in the continental troposphere. Geophys Res Lett. 2014;41:2191–5. https://doi.org/10.1002/2013gl058976.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (42222706).

Author information

Authors and Affiliations

Authors

Contributions

XC drafted the manuscript, with inputs from all the co-authors. YC and YW revised the manuscript. JL, MZ, and KH reviewed the manuscript.

Corresponding author

Correspondence to Yuan Cheng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests. 

Human and Animal Rights and Informed Consent

This article does not contain any study with human and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2389 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Liu, J., Wu, Y. et al. A Review on Brown Carbon Aerosol in China: From Molecular Composition to Climate Impact. Curr Pollution Rep (2024). https://doi.org/10.1007/s40726-024-00293-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40726-024-00293-y

Keywords

Navigation