Analyzing and identifying predictable time range for stress prediction based on chaos theory and deep learning

Author:

Li NingyunORCID,Zhang Huijun,Feng Ling,Ding Yang,Li Haichuan

Abstract

Abstract Propose Stress is a common problem globally. Prediction of stress in advance could help people take effective measures to manage stress before bad consequences occur. Considering the chaotic features of human psychological states, in this study, we integrate deep learning and chaos theory to address the stress prediction problem. Methods Based on chaos theory, we embed one’s seemingly disordered stress sequence into a high dimensional phase space so as to reveal the underlying dynamics and patterns of the stress system, and meanwhile are able to identify the stress predictable time range. We then conduct deep learning with a two-layer (dimension and temporal) attention mechanism to simulate the nonlinear state of the embedded stress sequence for stress prediction. Results We validate the effectiveness of the proposed method on the public available Tesserae dataset. The experimental results show that the proposed method outperforms the pure deep learning method and Chaos method in both 2-label and 3-label stress prediction. Conclusion Integrating deep learning and chaos theory for stress prediction is effective, and can improve the prediction accuracy over 2% and 8% more than those of the deep learning and the Chaos method respectively. Implications and further possible improvements are also discussed at the end of the paper.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3