Author:
Alazwari Sana,Maashi Mashael,Alsamri Jamal,Alamgeer Mohammad,Ebad Shouki A.,Alotaibi Saud S.,Obayya Marwa,Al Zanin Samah
Publisher
Springer Science and Business Media LLC
Reference24 articles.
1. Bengs M, Westermann S, Gessert N, Eggert D, Gerstner AOH, Mueller NA, Betz C, Laffers W, Schlaefer A. ‘Spatio-spectral deep learning methods for in-vivo hyperspectral laryngeal cancer detection.’ Proc SPIE. 2020;11314:369–74.
2. Tayade HM. Early detection of laryngeal cancer using multiple instance learning based neural network. Doctoral dissertation, National College of Ireland, Dublin, Ireland, 2020.
3. Zhou X, Tang C, Huang P, Mercaldo F, Santone A, Shao Y. LPCANet: classification of laryngeal cancer histopathological images using a CNN with position attention and channel attention mechanisms. Interdiscipl Sci Comput Life Sci. 2021;13(4):666–82.
4. Esmaeili N, Sharaf E, Ataide EJG, Illanes A, Boese A, Davaris N, Arens C, Navab N, Friebe M. Deep convolution neural network for laryngeal cancer classification on contact endoscopy-narrow band imaging. Sensors. 2021;21(23):8157.
5. Kim H, Jeon J, Han YJ, Joo Y, Lee J, Lee S, Im S. Convolutional neural network classifies pathological voice change in laryngeal cancer with high accuracy. J Clin Med. 2020;9(11):3415.