Fungal Diseases Caused by Serious Contamination of Pharmaceuticals and Medical Devices, and Rapid Fungal Detection Using Nano-Diagnostic Tools: A Critical Review

Author:

Ahmed Mohamed Abd El-Gawad El-Sayed,Abbas Heba S.ORCID,Kotakonda Muddukrishnaiah

Abstract

AbstractFungal-contaminated compounded pharmaceuticals and medical devices pose a public health problem. This review aimed to provide an organized overview of the literature on that critical issue. Firstly, it was found that compounding pharmacies can produce drugs that are contaminated with fungi, leading to outbreaks of severe fungal diseases. Secondly, inadequate sterile compounding techniques or storage conditions, or exceeding the limit of a fungal count, can result in fungal contamination. Lastly, nanotools can be used to rapidly detect fungi, thus improving fungal diagnostic procedures. To achieve this goal, we have reviewed the published data on PubMed, the CDC, and FDA Web sites, and a literature search was undertaken to identify severe fungal infections associated with compounding pharmacies outside of hospitals, limited by the dates 2003 to 2021. The “Preferred Reporting Items for Critical Reviews” were followed in searching, including, and excluding papers. Fungal outbreaks have been documented due to contaminated pharmaceuticals and medical devices. In 2013, 55 people died from fungal meningitis caused by contaminated steroid injections containing methylprednisolone acetate. Additionally, in 2021, Aspergillus penicillioides contamination was reported in ChloraPrep drugs, which was attributed to the storage conditions that were conducive to the growth of this fungus. These incidents have resulted in severe infectious diseases, such as invasive mycoses, cornea infections, Endophthalmitis, and intestinal and gastric mycosis. By implementing preventive measures and policies, it is possible to avoid these outbreaks. Creating Nano-diagnostics presents a major challenge, where promptly diagnosing fungal infections is required to determine the proper corrective and preventive measures.

Funder

Egyptian Drug Authority

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

Reference73 articles.

1. FDA , 2015, Compounding and the FDA: Questions and answers. Available at: http://www.fda.gov/Drugs/ GuidanceComplianceRegulatoryInformation/PharmacyCompounding/ucm339764.htm

2. Myers CE (2013) History of sterile compounding in US hospitals: learning from the tragic lessons of the past. Am J Health Syst Pharm 70:1414–1427. https://doi.org/10.2146/ajhp130112

3. Kastango EC, Douglass KH. Clinical IQ LLC. [Accessed Jan 5, 2015] Quality standards for large scale sterile compounding facilities. doi: https://doi.org/10.1093/ajhp/61.18.1928.

4. United States Pharmacopia, Microbiological Tests. In: The United States Pharmacopeia, 30th revision and the National Formulary, 25th edition (USP-NF). Rockville, Maryland; United States Pharmacopeial Convention, 2007.

5. Ratajczak M, Kubicka MM, Kamińska D, Sawicka P, Długaszewska J (2015) Microbiological quality of non-sterile pharmaceutical products. Saudi Pharm J 23(3):303–307. https://doi.org/10.1016/j.jsps.2014.11.015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3