Biotic Interactions in Soil are Underestimated Drivers of Microbial Carbon Use Efficiency

Author:

Iven HélèneORCID,Walker Tom W. N.ORCID,Anthony MarkORCID

Abstract

AbstractMicrobial carbon use efficiency (CUE)—the balance between microbial growth and respiration—strongly impacts microbial mediated soil carbon storage and is sensitive to many well-studied abiotic environmental factors. However, surprisingly, little work has examined how biotic interactions in soil may impact CUE. Here, we review the theoretical and empirical lines of evidence exploring how biotic interactions affect CUE through the lens of life history strategies. Fundamentally, the CUE of a microbial population is constrained by population density and carrying capacity, which, when reached, causes species to grow more quickly and less efficiently. When microbes engage in interspecific competition, they accelerate growth rates to acquire limited resources and release secondary chemicals toxic to competitors. Such processes are not anabolic and thus constrain CUE. In turn, antagonists may activate one of a number of stress responses that also do not involve biomass production, potentially further reducing CUE. In contrast, facilitation can increase CUE by expanding species realized niches, mitigating environmental stress and reducing production costs of extracellular enzymes. Microbial interactions at higher trophic levels also influence CUE. For instance, predation on microbes can positively or negatively impact CUE by changing microbial density and the outcomes of interspecific competition. Finally, we discuss how plants select for more or less efficient microbes under different contexts. In short, this review demonstrates the potential for biotic interactions to be a strong regulator of microbial CUE and additionally provides a blueprint for future research to address key knowledge gaps of ecological and applied importance for carbon sequestration.

Funder

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3