Author:
Valev Dimitar,Kurkela Juha,Tyystjärvi Esa,Tyystjärvi Taina
Abstract
AbstractIt is shown that a freshly inoculated culture of the model cyanobacterium Synechocystis sp. PCC 6803 consumed almost all phosphate and 50% of nitrate within 6 days from the nutrient-rich BG-11 growth medium, indicating potential of cyanobacteria to purify wastewaters. Synechocystis sp. PCC 6803 control strain also collected nutrients efficiently from a landfill leachate wastewater KA2 (5.9–6.9 mM ammonium and 0.073–0.077 mM phosphate). Wastewaters might induce oxidative stress to microalgae, which prompted us to test growth of sigma factor inactivation strains, as ΔsigBCE and ΔsigCDE strains show superior growth in chemically induced oxidative stress. All cyanobacterial strains, including a stress-sensitive strain ΔsigBCDE, grew well in KA2 for four days, indicating that KA2 did not cause immediate oxidative stress. Completely arrested growth and bleaching of ΔsigBCDE cells after one week in KA2 wastewater point to the importance of group 2 sigma factor-mediated changes in gene expression during wastewater treatment. The growth of ΔsigBCD was arrested early in un-buffered and Hepes buffered (pH 7.5) KA2. In ΔsigBCD, all phosphate transporter genes are upregulated in standard conditions, and ΔsigBCD cells showed growth defects in low-phosphate BG-11 medium. ΔsigBCD cells removed phosphate slower from KA2 than the control strain, but phosphate supplementation of KA2 did not improve growth of ΔsigBCD. The ΔsigBCE strain showed superior growth in a laboratory-scale bioreactor in bright light and removed phosphate even slightly more efficiently than the control strain if KA2 was Hepes buffered although ΔsigBCE grew slowly in un-buffered KA2 and in low-phosphate BG-11 medium. The results indicate that engineering expression of regulatory group 2 sigma factor(s) might be useful for practical applications.
Publisher
Springer Science and Business Media LLC
Subject
Applied Microbiology and Biotechnology,General Medicine,Microbiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献