Testing the Potential of Regulatory Sigma Factor Mutants for Wastewater Purification or Bioreactor Run in High Light

Author:

Valev Dimitar,Kurkela Juha,Tyystjärvi Esa,Tyystjärvi Taina

Abstract

AbstractIt is shown that a freshly inoculated culture of the model cyanobacterium Synechocystis sp. PCC 6803 consumed almost all phosphate and 50% of nitrate within 6 days from the nutrient-rich BG-11 growth medium, indicating potential of cyanobacteria to purify wastewaters. Synechocystis sp. PCC 6803 control strain also collected nutrients efficiently from a landfill leachate wastewater KA2 (5.9–6.9 mM ammonium and 0.073–0.077 mM phosphate). Wastewaters might induce oxidative stress to microalgae, which prompted us to test growth of sigma factor inactivation strains, as ΔsigBCE and ΔsigCDE strains show superior growth in chemically induced oxidative stress. All cyanobacterial strains, including a stress-sensitive strain ΔsigBCDE, grew well in KA2 for four days, indicating that KA2 did not cause immediate oxidative stress. Completely arrested growth and bleaching of ΔsigBCDE cells after one week in KA2 wastewater point to the importance of group 2 sigma factor-mediated changes in gene expression during wastewater treatment. The growth of ΔsigBCD was arrested early in un-buffered and Hepes buffered (pH 7.5) KA2. In ΔsigBCD, all phosphate transporter genes are upregulated in standard conditions, and ΔsigBCD cells showed growth defects in low-phosphate BG-11 medium. ΔsigBCD cells removed phosphate slower from KA2 than the control strain, but phosphate supplementation of KA2 did not improve growth of ΔsigBCD. The ΔsigBCE strain showed superior growth in a laboratory-scale bioreactor in bright light and removed phosphate even slightly more efficiently than the control strain if KA2 was Hepes buffered although ΔsigBCE grew slowly in un-buffered KA2 and in low-phosphate BG-11 medium. The results indicate that engineering expression of regulatory group 2 sigma factor(s) might be useful for practical applications.

Funder

Academy of Finland

NordForsk

Novo Nordisk Fonden

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3