Structure and Ecological Function of Fungal Endophytes from Stems of Different Mulberry Cultivars

Author:

Peng Fangfang,Li Xunlan,Wei Zhaoxin,Luo Youjin,Wang Wu,Han Guohui

Abstract

AbstractTo explore the microbial community structure and ecological function of mulberry and their potential relationship with the resistance of mulberry, the community structure and function of endophytic fungi in 18 mulberry cultivars were analyzed and predicted by using high-throughput sequencing technology and the FUNGuild database. A total of 352 operational taxonomic units of fungi were observed at a 97% similarity level, representing six phyla of fungi, Fungi_unclassified, Ascomycota, Basidiomycota, Zygomycota, Rozellomycota, and Chytridiomycota. Fungi_unclassified was dominant, and Ascomycota was relatively dominant in all cultivars. At the genus level, Ascomycota_unclassified was dominant, and Ampelomyces was relatively dominant, with a richness in TAIWANCHANGGUOSANG 16.47–8975.69 times that in the other cultivars. Classified Ascomycota_unclassified was 4.75–296.65 times more common in NANYUANSIJI than in the other cultivars. Based on the FUNGuild analysis method, we successfully annotated six nutrient types, namely, pathotroph, pathotroph–saprotroph, pathotroph–saprotroph–symbiotroph, saprotroph, saprotroph–symbiotroph, and symbiotroph, among which saprophytic–symbiotic accounted for the largest proportion and was absolutely dominant in TWC. This research suggests that community composition differs among cultivars and that the diversity and richness of endophytic fungi in resistant cultivars are higher than those in susceptible cultivars. The ecological functions of cultivars with different resistances are quite different.

Funder

Chongqing Research Institutions Performance Incentive And Guidance Special Project

Chongqing Agricultural Development Fund - Improved Seed Innovation Project

Young Innovation Team Project of Chongqing Agriculture Science Academy

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3