Insights on the Working Principles of Secondary Electrospray Ionization High-Resolution Mass Spectrometry for Quantitative Analysis of Aerosol Chemical Composition

Author:

Xu Xin,Zeng Jia Fa,Jin Dan Dan,Huang Zheng Xu,Li Lei,Wexler Anthony S.,Chan Man Nin,Zhou Zhen,Li Yong Jie,Li XueORCID

Abstract

AbstractReal-time mass spectrometry (MS) has attracted increasing interest in environmental analysis due to its advantages in high time resolution, minimization of sampling artifact, and avoidance of time-consuming sample pretreatment. Among real-time MS methods, secondary electrospray ionization MS (SESI-MS) is showing great promise for the detection of organic compounds in atmospheric particulate matter. In this study, we demonstrated the working principles of secondary nanoelectrospray ionization (Sec-nESI) for real-time measurement of laboratory-generated organic aerosols using l-tartaric acid (TA) as a model compound. Factors affecting the detection of TA particles using a homemade Sec-nESI source coupled with a high-resolution mass spectrometer are systematically investigated. Temperature of ion transport capillary (ITC) was found to be the key factor in determining the ion signal intensity, which shows an increase of intensity by a factor of 100 from ITC temperature of 100–300 °C and could be attributed to more efficient desolvation and ionization. The characteristic fragment ion at m/z 72.99 was selected for quantitative analysis of TA at normalized collision energy of 50%, the optimal value applied during MS/MS analysis. Detection limit of 0.14 µg/m3 and a linear range of 0.2–2.97 µg/m3 are achieved. Satisfactory correlations between ion signal intensity and particle surface area (R2 = 0.969) and mass concentration (R2 = 0.967) were obtained. Although an equally good correlation was observed between signal intensity and particle surface area, the good correlation between signal intensity and particle mass concentration indicates that high solubility of TA ensures efficient dissolution of TA in the primary ESI droplets for further ionization.

Funder

Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program

National Natural Science Foundation of China

Science and Technology Program of Guangzhou

Science and Technology Project for International Cooperation of Guangdong Province

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Pollution,General Materials Science,Environmental Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3