Abstract
AbstractReal-time mass spectrometry (MS) has attracted increasing interest in environmental analysis due to its advantages in high time resolution, minimization of sampling artifact, and avoidance of time-consuming sample pretreatment. Among real-time MS methods, secondary electrospray ionization MS (SESI-MS) is showing great promise for the detection of organic compounds in atmospheric particulate matter. In this study, we demonstrated the working principles of secondary nanoelectrospray ionization (Sec-nESI) for real-time measurement of laboratory-generated organic aerosols using l-tartaric acid (TA) as a model compound. Factors affecting the detection of TA particles using a homemade Sec-nESI source coupled with a high-resolution mass spectrometer are systematically investigated. Temperature of ion transport capillary (ITC) was found to be the key factor in determining the ion signal intensity, which shows an increase of intensity by a factor of 100 from ITC temperature of 100–300 °C and could be attributed to more efficient desolvation and ionization. The characteristic fragment ion at m/z 72.99 was selected for quantitative analysis of TA at normalized collision energy of 50%, the optimal value applied during MS/MS analysis. Detection limit of 0.14 µg/m3 and a linear range of 0.2–2.97 µg/m3 are achieved. Satisfactory correlations between ion signal intensity and particle surface area (R2 = 0.969) and mass concentration (R2 = 0.967) were obtained. Although an equally good correlation was observed between signal intensity and particle surface area, the good correlation between signal intensity and particle mass concentration indicates that high solubility of TA ensures efficient dissolution of TA in the primary ESI droplets for further ionization.
Funder
Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
National Natural Science Foundation of China
Science and Technology Program of Guangzhou
Science and Technology Project for International Cooperation of Guangdong Province
Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Pollution,General Materials Science,Environmental Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献