Multidimensional Author Profiling for Social Business Intelligence

Author:

Lanza-Cruz IndiraORCID,Berlanga RafaelORCID,Aramburu María JoséORCID

Abstract

AbstractThis paper presents a novel author profiling method specially aimed at classifying social network users into the multidimensional perspectives for social business intelligence (SBI) applications. In this scenario, being the user profiles defined on demand for each particular SBI application, we cannot assume the existence of labelled datasets for training purposes. Thus, we propose an unsupervised method to obtain the required labelled datasets for training the profile classifiers. Contrary to other author profiling approaches in the literature, we only make use of the users’ descriptions, which are usually part of the metadata posts. We exhaustively evaluated the proposed method under four different tasks for multidimensional author profiling along with state-of-the-art text classifiers. We achieved performances around 88% and 98% of F1 score for a gold standard and a silver standard datasets respectively. Additionally, we compare our results to other supervised approaches previously proposed for two of our tasks, getting very close performances despite using an unsupervised method. To the best of our knowledge, this is the first method designed to label user profiles in an unsupervised way for training profile classifiers with a similar performance to fully supervised ones.

Funder

Spanish Ministry of Industry and Commerce

Universitat Jaume I

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Information Systems,Theoretical Computer Science,Software

Reference51 articles.

1. Amigó, E., Carrillo-de-Albornoz, E., Chugur, I., Corujo, A., Gonzalo, J., Meij, E., de Rijke, M., & Spina, D. (2014). Overview of RepLab 2014: author profiling and reputation dimensions for online reputation management. In E. Kanoulas, M. Lupu, P. Clough, M. Sanderson, M. Hall, A. Hanbury, & E. Toms (Eds.), Information Access evaluation. Multilinguality, Multimodality, and Interaction (8685 vol.). Springer. Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-11382-1_24

2. Aramburu, M. J., Berlanga, R., & Lanza-Cruz, I. (2021). Quality management in social business intelligence projects. In Proceedings of the 23rd International Conference on Enterprise Information Systems - Volume 1: ICEIS (pp. 320–327). https://doi.org/10.5220/0010495703200327

3. Aramburu, M. J., Berlanga, R., & Lanza-Cruz, I. (2020). Social media multidimensional analysis for intelligent health surveillance. International Journal of Environmental Research and Public Health, 17, 2289. https://doi.org/10.3390/ijerph17072289

4. Aswani, R., Kar, A. K., & Vigneswara Ilavarasan, P. (2018). Detection of spammers in twitter marketing: a hybrid approach using social media analytics and bio inspired computing. Information Systems Frontiers, 20, 515–530. https://doi.org/10.1007/s10796-017-9805-8

5. Berlanga, R., García-Moya, L., Nebot, V., Aramburu, M. J., Sanz, I., & Llidó, D. M. (2015). SLOD-BI: an open data infrastructure for enabling social business intelligence. International Journal of Data Warehousing and Mining (IJDWM), 11(4), 1–28. https://doi.org/10.4018/ijdwm.2015100101

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building a Data Warehouse for Social Media: Review and Comparison;Computación y Sistemas;2024-03-20

2. A Data Quality Multidimensional Model for Social Media Analysis;Business & Information Systems Engineering;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3