1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. http://tensorflow.org/.
2. Ahmed, S.E. (2014). Perspectives on big data analysis: methodologies and applications. USA: Amer Mathematical Society.
3. Anand, R., Mehrotra, K.G., Mohan, C.K., & Ranka, S. (1993). An improved algorithm for neural network classification of imbalanced training sets. IEEE Transactions on Neural Networks, 4(6), 962–969. https://doi.org/10.1109/72.286891.
4. Bauder, R.A., & Khoshgoftaar, T.M. (2016). A novel method for fraudulent medicare claims detection from expected payment deviations (application paper). In 2016 IEEE 17Th international conference on information reuse and integration (IRI). https://doi.org/10.1109/IRI.2016.11 (pp. 11–19).
5. Bauder, R.A., & Khoshgoftaar, T.M. (2016). A probabilistic programming approach for outlier detection in healthcare claims. In 2016 15Th IEEE international conference on machine learning and applications (ICMLA), pp. 347–354, DOI https://doi.org/10.1109/ICMLA.2016.0063, (to appear in print).