A Fully Privacy-Preserving Solution for Anomaly Detection in IoT using Federated Learning and Homomorphic Encryption

Author:

Arazzi Marco,Nicolazzo Serena,Nocera Antonino

Abstract

AbstractAnomaly detection for the Internet of Things (IoT) is a very important topic in the context of cyber-security. Indeed, as the pervasiveness of this technology is increasing, so is the number of threats and attacks targeting smart objects and their interactions. Behavioral fingerprinting has gained attention from researchers in this domain as it represents a novel strategy to model object interactions and assess their correctness and honesty. Still, there exist challenges in terms of the performance of such AI-based solutions. The main reasons can be alleged to scalability, privacy, and limitations on adopted Machine Learning algorithms. Indeed, in classical distributed fingerprinting approaches, an object models the behavior of a target contact by exploiting only the information coming from the direct interaction with it, which represents a very limited view of the target because it does not consider services and messages exchanged with other neighbors. On the other hand, building a global model of a target node behavior leveraging the information coming from the interactions with its neighbors, may lead to critical privacy concerns. To face this issue, the strategy proposed in this paper exploits Federated Learning to compute a global behavioral fingerprinting model for a target object, by analyzing its interactions with different peers in the network. Our solution allows the training of such models in a distributed way by relying also on a secure delegation strategy to involve less capable nodes in IoT. Moreover, through homomorphic encryption and Blockchain technology, our approach guarantees the privacy of both the target object and the different workers, as well as the robustness of the strategy in the presence of attacks. All these features lead to a secure fully privacy-preserving solution whose robustness, correctness, and performance are evaluated in this paper using a detailed security analysis and an extensive experimental campaign. Finally, the performance of our model is very satisfactory, as it consistently discriminates between normal and anomalous behaviors across all evaluated test sets, achieving an average accuracy value of 0.85.

Funder

Universitá degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Information Systems,Theoretical Computer Science,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A deep reinforcement learning approach for security-aware service acquisition in IoT;Journal of Information Security and Applications;2024-09

2. Privacy-preserving in Blockchain-based Federated Learning systems;Computer Communications;2024-06

3. Anomaly Detection in Blockchain Networks Using Unsupervised Learning: A Survey;Algorithms;2024-05-09

4. Privacy-Preserving Network Traffic Analysis Using Homomorphic Encryption;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

5. Chaotic Sparrow Search Algorithm with Deep Learning for Anomaly Detection in Internet of Things;2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3