Comparing and Improving Active Learning Uncertainty Measures for Transformer Models by Discarding Outliers

Author:

Gonsior JuliusORCID,Falkenberg Christian,Magino Silvio,Reusch AnjaORCID,Hartmann ClaudioORCID,Thiele MaikORCID,Lehner WolfgangORCID

Abstract

AbstractDespite achieving state-of-the-art results in nearly all Natural Language Processing applications, fine-tuning Transformer-encoder based language models still requires a significant amount of labeled data to achieve satisfying work. A well known technique to reduce the amount of human effort in acquiring a labeled dataset is Active Learning (AL): an iterative process in which only the minimal amount of samples is labeled. AL strategies require access to a quantified confidence measure of the model predictions. A common choice is the softmax activation function for the final Neural Network layer. In this paper, we compare eight alternatives on seven datasets and show that the softmax function provides misleading probabilities. Our finding is that most of the methods primarily identify hard-to-learn-from samples (commonly called outliers), resulting in worse than random performance, instead of samples, which actually reduce the uncertainty of the learned language model. As a solution, this paper proposes Uncertainty-Clipping, a heuristic to systematically exclude samples, which results in improvements for most methods compared to the softmax function.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Baram Y, Yaniv RE, Luz K (2004). Online choice of active learning algorithms. Journal of Machine Learning Research 5(Mar):255–291

2. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural network. In: ICML, PMLR, pp 1613–1622

3. Coleman C, Yeh C, Mussmann S, Mirzasoleiman B, Bailis P, Liang P, Leskovec J, Zaharia M (2020). Selection via proxy: Efficient data selection for deep learning. ICLR

4. D’Arcy M, Downey D (2022). Limitations of active learning with deep transformer language models

5. Devlin J, Chang MW, Lee K, Toutanova K (2019) Bert: Pre-training of deep bidirectional transformers for language understanding. In: NAACL, Association for Computational Linguistics, pp 4171–4186

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3