Exploiting Shared Sub-Expression and Materialized View Reuse for Multi-Query Optimization

Author:

Gurumurthy Bala,Bidarkar Vasudev Raghavendra,Broneske David,Pionteck Thilo,Saake Gunter

Abstract

AbstractQuerying in isolation lacks the potential of reusing intermediate results, which ends up wasting computational resources. Multi-Query Optimization (MQO) addresses this challenge by devising a shared execution strategy across queries, with two generally used strategies: batched or cached. These strategies are shown to improve performance, but hardly any study explores the combination of both. In this work we explore such a hybrid MQO, combining batching (Shared Sub-Expression) and caching (Materialized View Reuse) techniques. Our hybrid-MQO system merges batched query results as well as caches the intermediate results, thereby any new query is given a path within the previous plan as well as reusing the results. Since caching is a key component for improving performance, we measure the impact of common caching techniques such as FIFO, LRU, MRU and LFU. Our results show LRU to be the optimal for our usecase, which we use in our subsequent evaluations. To study the influence of batching, we vary the factor - - which represents the similarity of the results within a query batch. Similarly, we vary the cache sizes to study the influence of caching. Moreover, we also study the role of different database operators in the performance of our hybrid system. The results suggest that, depending on the individual operators, our hybrid method gains a speed-up between 4x to a slowdown of 2x from using MQO techniques in isolation. Furthermore, our results show that workloads with a generously sized cache that contain similar queries benefit from using our hybrid method, with an observed speed-up of 2x over sequential execution in the best case.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3