Improving the freshness of the search engines by a probabilistic approach based incremental crawler

Author:

Pavai G.,Geetha T. V.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Information Systems,Theoretical Computer Science,Software

Reference36 articles.

1. Ali, H. A., El Desouky, A. I., & Saleh, A. I. (2008). A New Approach for Building a Scalable and Adaptive Vertical Search Engine. International Journal of Intelligent Information Technologies (IJIIT), 4(1), 52–79. doi: 10.4018/jiit.2008010 .

2. Barbosa, L., & Freire, J. (2004). Siphoning hidden-web data through keyword- based interfaces. In Proceedings of Brazilian Symposium on Databases (SBBD) (pp. 309–321). Brazil: Brasilia.

3. Bergman, M. K. (2001). The deep web: surfacing hidden value. Journal of Electronic Publishing, 7(1), 1174–1175.

4. Bright Planet, (2010) Deep Web FAQs, http://www.brightplanet.com/the-deep-web/

5. Cho, J., & Molina, H. G. (2000a). The Evolution of the Web and Implications for an Incremental Crawler”, In Proceedings of the 26th International Conference on Very Large Data Bases, 200–209.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel combining method of dynamic and static web crawler with parallel computing;Multimedia Tools and Applications;2024-01-05

2. Seed URL Selection and Performance Analysis in Web Crawlers: A Comprehensive Review;Düzce Üniversitesi Bilim ve Teknoloji Dergisi;2023-07-31

3. Analysis of Stock Market Public Opinion Based on Web Crawler and Deep Learning Technologies Including 1DCNN and LSTM;Arabian Journal for Science and Engineering;2022-11-15

4. Water-Quality Assessment and Pollution-Risk Early-Warning System Based on Web Crawler Technology and LSTM;International Journal of Environmental Research and Public Health;2022-09-19

5. Reinforcement Learning in Deep Web Crawling: Survey;Proceedings of Second Doctoral Symposium on Computational Intelligence;2021-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3